-
Notifications
You must be signed in to change notification settings - Fork 449
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
scale=0.5或者0.25时报错 #385
Comments
Hi |
我试了一下改成128或者256,代码依然会报错。具体来说,在对XTEST-L-2K(scale=0.5)进行测试时,当设置padder = InputPadder(tenOne.shape, 256),测试到第5组数据报错: 当设置padder = InputPadder(tenOne.shape,128),测试到第4组数据报错: 当设置padder = InputPadder(tenOne.shape,64),测试到第3组数据报错: 貌似padder = InputPadder(tenOne.shape,divisor)中的divisor设置的越大,就能测试更多组数据。 |
按道理原始 RIFE 需要 4*8=32 取整 padding |
作者您好,我使用上述代码测试RIFE在X-TEST-L(2K以及4K)数据集上的性能,当设置scale为1时,可以正常运行。当设置scale为0.25或者0.25时,就会报错:
奇怪的是,第一组数据成功跑出了结果,到第二组测试数据就开始报错了。使用上述代码对XTEST以及Xiph数据集测试时,只要scale设为0.25或者0.5,就会遇到上述问题。
经过分析,是IFNet.py中flow的shape发生了变化:
The text was updated successfully, but these errors were encountered: