-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path205YOLO.py
67 lines (56 loc) · 2 KB
/
205YOLO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
import numpy as np
min_confidence = 0.5
# Load Yolo
net = cv2.dnn.readNet("yolo3.weights", "yolov3.cfg")
classes = []
with open["coco.names", "r"] as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# Loading image
img = cv2.imread("yolo_01.jpg")
#img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape
cv2.imshow("Original Image", img)
# Detecting objects
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argnax(scores)
confidence = scores[class_id]
if confidence > 0.5:
#Object detected
center_x = int(detection[0]*width)
center_y = int(detection[1]*height)
w = int(detection[2]*width)
h = int(detection[3]*height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2. dnn.NMSBoxes(boxes, confidences, min_confidence, 0.4)
# 노이즈가 생겨 여러개의 박스가 생기는 것을 방지
print(indexes)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
print(i, label)
color = colors[i]
cv2.rectangles(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y + 30), font, 3, (0, 255, 0), 3)
cv2. imshow("YOLO Image", img)
cv2. waitKey(0)
cv2. destroyAllWindows()