forked from SAITPublic/MLPerf_Training_v2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
550 lines (461 loc) · 21.9 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BERT inference script. Does not depend on dataset. """
from __future__ import absolute_import, division, print_function
import argparse
import collections
import json
import logging
import math
import os
import random
import sys
from io import open
import numpy as np
import torch
from tqdm import tqdm, trange
from types import SimpleNamespace
from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modeling import BertForQuestionAnswering, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from tokenization import (BasicTokenizer, BertTokenizer, whitespace_tokenize)
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
import math
import json
import numpy as np
import collections
def preprocess_tokenized_text(doc_tokens, query_tokens, tokenizer,
max_seq_length, max_query_length):
""" converts an example into a feature """
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# truncate if too long
length = len(all_doc_tokens)
length = min(length, max_tokens_for_doc)
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
for i in range(length):
token_to_orig_map[len(tokens)] = tok_to_orig_index[i]
token_is_max_context[len(tokens)] = True
tokens.append(all_doc_tokens[i])
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
tensors_for_inference = {
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
tensors_for_inference = SimpleNamespace(**tensors_for_inference)
tokens_for_postprocessing = {
'tokens': tokens,
'token_to_orig_map': token_to_orig_map,
'token_is_max_context': token_is_max_context
}
tokens_for_postprocessing = SimpleNamespace(**tokens_for_postprocessing)
return tensors_for_inference, tokens_for_postprocessing
RawResult = collections.namedtuple("RawResult", ["start_logits", "end_logits"])
def get_predictions(doc_tokens, tokens_for_postprocessing,
start_logits, end_logits, n_best_size,
max_answer_length, do_lower_case,
can_give_negative_answer, null_score_diff_threshold):
""" Write final predictions to the json file and log-odds of null if needed. """
result = RawResult(start_logits=start_logits, end_logits=end_logits)
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["start_index", "end_index", "start_logit", "end_logit"])
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
start_indices = _get_indices_of_largest_logits(result.start_logits)
end_indices = _get_indices_of_largest_logits(result.end_logits)
# if we could have irrelevant answers, get the min score of irrelevant
if can_give_negative_answer:
feature_null_score = result.start_logits[0] + result.end_logits[0]
if feature_null_score < score_null:
score_null = feature_null_score
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
for start_index in start_indices:
for end_index in end_indices:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(tokens_for_postprocessing.tokens):
continue
if end_index >= len(tokens_for_postprocessing.tokens):
continue
if start_index not in tokens_for_postprocessing.token_to_orig_map:
continue
if end_index not in tokens_for_postprocessing.token_to_orig_map:
continue
if not tokens_for_postprocessing.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]
)
)
if can_give_negative_answer:
prelim_predictions.append(
_PrelimPrediction(
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit
)
)
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True
)
_NbestPrediction = collections.namedtuple("NbestPrediction", ["text", "start_logit", "end_logit"])
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = tokens_for_postprocessing.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = tokens_for_postprocessing.token_to_orig_map[pred.start_index]
orig_doc_end = tokens_for_postprocessing.token_to_orig_map[pred.end_index]
orig_tokens = doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# de-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
# get final text
final_text = get_final_text(tok_text, orig_text, do_lower_case)
if final_text in seen_predictions:
continue
# mark it
seen_predictions[final_text] = True
else: # this is a null prediction
final_text = ""
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit
)
)
# if we didn't include the empty option in the n-best, include it
if can_give_negative_answer:
if "" not in seen_predictions:
nbest.append(
_NbestPrediction(
text="",
start_logit=null_start_logit,
end_logit=null_end_logit
)
)
# In very rare edge cases we could only have single null prediction.
# So we just create a nonce prediction in this case to avoid failure.
if len(nbest) == 1:
nbest.insert(0, _NbestPrediction(text="", start_logit=0.0, end_logit=0.0))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(_NbestPrediction(text="", start_logit=0.0, end_logit=0.0))
assert len(nbest) >= 1
# scoring
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
# get probabilities
probs = _compute_softmax(total_scores)
# nbest predictions into json format
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
nbest_json.append(output)
assert len(nbest_json) >= 1
if can_give_negative_answer:
# predict "unknown" iff ((score_null - score_of_best_non-null_entry) > threshold)
score = best_non_null_entry.start_logit + best_non_null_entry.end_logit
score_diff = score_null - score
if score_diff > null_score_diff_threshold:
nbest_json[0]['text'] = "unknown"
# best_non_null_entry.text = "unknown"
#
return nbest_json
def get_final_text(pred_text, orig_text, do_lower_case):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heruistic between
# `pred_text` and `orig_text` to get a character-to-charcter alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def _get_indices_of_largest_logits(logits):
""" sort logits and return the indices of the sorted array """
indices_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
indices = map(lambda x: x[0], indices_and_score)
indices = list(indices)
return indices
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--init_checkpoint",
default=None,
type=str,
required=True,
help="The checkpoint file from pretraining")
## Other parameters
parser.add_argument("--seed", default=1, type=int)
parser.add_argument("--question", default="Most antibiotics target bacteria and don't affect what class of organisms? ",
type=str, help="question")
parser.add_argument("--context", default="Within the genitourinary and gastrointestinal tracts, commensal flora serve as biological barriers by competing with pathogenic bacteria for food and space and, in some cases, by changing the conditions in their environment, such as pH or available iron. This reduces the probability that pathogens will reach sufficient numbers to cause illness. However, since most antibiotics non-specifically target bacteria and do not affect fungi, oral antibiotics can lead to an overgrowth of fungi and cause conditions such as a vaginal candidiasis (a yeast infection). There is good evidence that re-introduction of probiotic flora, such as pure cultures of the lactobacilli normally found in unpasteurized yogurt, helps restore a healthy balance of microbial populations in intestinal infections in children and encouraging preliminary data in studies on bacterial gastroenteritis, inflammatory bowel diseases, urinary tract infection and post-surgical infections. ",
type=str, help="context")
parser.add_argument("--max_seq_length", default=384, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--max_query_length", default=64, type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
parser.add_argument("--n_best_size", default=1, type=int,
help="The total number of n-best predictions to generate. ")
parser.add_argument("--max_answer_length", default=30, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--do_lower_case",
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument('--can_give_negative_answer',
action='store_true',
help='If true, then the model can reply with "unknown". ')
parser.add_argument('--null_score_diff_threshold',
type=float, default=-11.0,
help="If null_score - best_non_null is greater than the threshold predict 'unknown'. ")
parser.add_argument('--vocab_file',
type=str, default=None, required=True,
help="Vocabulary mapping/file BERT was pretrainined on")
parser.add_argument("--config_file",
default=None,
type=str,
required=True,
help="The BERT model config")
parser.add_argument('--fp16',
action='store_true',
help="use mixed-precision")
parser.add_argument("--local_rank", default=-1, help="ordinal of the GPU to use")
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
tokenizer = BertTokenizer(args.vocab_file, do_lower_case=args.do_lower_case, max_len=512) # for bert large
# Prepare model
config = BertConfig.from_json_file(args.config_file)
# Padding for divisibility by 8
if config.vocab_size % 8 != 0:
config.vocab_size += 8 - (config.vocab_size % 8)
# initialize model
model = BertForQuestionAnswering(config)
model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu')["model"])
model.to(device)
if args.fp16:
model.half()
model.eval()
print("question: ", args.question)
print("context: ", args.context)
print()
# preprocessing
doc_tokens = args.context.split()
query_tokens = tokenizer.tokenize(args.question)
feature = preprocess_tokenized_text(doc_tokens,
query_tokens,
tokenizer,
max_seq_length=args.max_seq_length,
max_query_length=args.max_query_length)
tensors_for_inference, tokens_for_postprocessing = feature
input_ids = torch.tensor(tensors_for_inference.input_ids, dtype=torch.long).unsqueeze(0)
segment_ids = torch.tensor(tensors_for_inference.segment_ids, dtype=torch.long).unsqueeze(0)
input_mask = torch.tensor(tensors_for_inference.input_mask, dtype=torch.long).unsqueeze(0)
# load tensors to device
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
# run prediction
with torch.no_grad():
start_logits, end_logits = model(input_ids, segment_ids, input_mask)
# post-processing
start_logits = start_logits[0].detach().cpu().tolist()
end_logits = end_logits[0].detach().cpu().tolist()
answer = get_predictions(doc_tokens, tokens_for_postprocessing,
start_logits, end_logits, args.n_best_size,
args.max_answer_length, args.do_lower_case,
args.can_give_negative_answer,
args.null_score_diff_threshold)
# print result
print(json.dumps(answer, indent=4))
if __name__ == "__main__":
main()