forked from mir-aidj/EDM-subgenre-classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
72 lines (58 loc) · 2.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 15 12:05:01 2021
@author: maclab
"""
"""
Name : main.py
Function : Execute the EDM-subgenre-classification (Just for Using)
This program provide late-fusion pre-trained model, and the
file name is "joint-model-all-2500.pkl". The pre-trained model
is in under the folder "model_pkl".
"""
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,6"
import sys
import torch
import torch.nn as nn
from model import Joint_ShortChunkCNN_Res
from feature_extraction import set_the_dataset_using, save_feature
from dataset_concat import ConcatDataset
from model_loading_predict import Using_joint_model, song_level_test
# EDM subgenre list with the original order
if __name__ == "__main__":
classifier_type = "using"
song_name = sys.argv[1] # Your song name
pre_trained_model = sys.argv[2] # Pretrained model is "joint-model-all-2500"
print("Now, it is for {}".format(classifier_type))
if classifier_type == "using":
"""
"using" in here is using the "late-fusion model"
"""
device = torch.device('cuda')
model = Joint_ShortChunkCNN_Res().to(device) # Loading model
model = nn.DataParallel(model)
print(model)
input_shape_1 = (-1,384,50) # Input Autocorrelation Tempogram shape
input_shape_2 = (-1,193,50) # Input Fourier Tempogram shape
input_shape_3 = (-1,1,128,200) # Input Mel-spectrogram shape
# Calculate the audio to npy and loading data into datalaoder
print("Start to extract features and set up the dataset ...")
save_feature(data_name = song_name)
feature_t, feature_f, feature_m, z_test = set_the_dataset_using()
data_loader = torch.utils.data.DataLoader(
ConcatDataset(feature_t, feature_f, feature_m),
batch_size = 1,
shuffle = False
)
print("Done!")
print("Start predict the tracks ...")
answers = Using_joint_model(data_loader,
input_shape_1,
input_shape_2,
input_shape_3,
pre_trained_model = pre_trained_model)
target_test = None
result = song_level_test(answers, z_test, target_test, training_use = False)
print("Done! The result is under the folder and called result.csv")