-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
384 lines (306 loc) · 12.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import pandas as pd
import nltk
import unicodedata
from collections import Counter
import pickle
import numpy as np
import mystats, analyze
# 0. pickle file 만드는 코드. 최초 1회만 실행.
#
#import kss
#from pykospacing import Spacing
#from tqdm import tqdm
#nltk.download("punkt")
#https://ebbnflow.tistory.com/246
## 파일 읽기
#filename = "petition.csv"
#data = pd.read_csv(filename)
#data = data[["article_id", "title", "content"]]
## 자료 기초 기술
"""doc_len = [] #문서 길이
doc_len_net = [] #문서 음절 수
for row in data.iterrows():
content = row[1][2]
content_net = []
try:
for syl in content:
try:
if unicodedata.name(syl).startswith("HANGUL"):
content_net.append(syl)
except:
continue
except:
print(row)
continue
doc_len.append(len(content))
doc_len_net.append(len(content_net))
print("doc num", len(doc_len)) #doc num 395546
print("doc len", np.mean(doc_len), np.median(doc_len), np.std(doc_len)) #doc len 524.2710253674668 273.0 3027.1638516690828
print("doc len net", np.mean(doc_len_net), np.median(doc_len_net), np.std(doc_len_net)) #doc len net 367.15037189100633 197.0 840.446737502712
doc_sent_num = []
doc_sent_lens = []
doc_sent_lens_net = []
spacing = Spacing()
for row in tqdm(data.iterrows()):
doc = row[1][2]
doc_sent_tokenized = [spacing(sent) for sent in kss.split_sentences(doc)]
doc_sent_num.append(len(doc_sent_tokenized)) # doc의 문장 개수 집계
sent_net = []
doc_sent_len = []
doc_sent_len_net = []
#문장 돌면서
for sent in doc_sent_tokenized:
doc_sent_len.append(len(sent)) # 문장별 문장 길이 수집
for syl in sent:
try:
if unicodedata.name(syl).startswith("HANGUL"):
sent_net.append(syl)
except:
continue
doc_sent_len_net.append(len(sent_net)) #문장별 음절 수 수집
doc_sent_lens.extend(doc_sent_len) # 해당 doc의 문장의 길이들 수집
doc_sent_lens_net.extend(doc_sent_len_net) #해당 doc의 문장의 음절 수들 수집
print("doc sent num", np.mean(doc_sent_num), np.median(doc_sent_num), np.std(doc_sent_num)) #doc len 524.2710253674668 273.0 3027.1638516690828
print("doc sent len", np.mean(doc_sent_lens), np.median(doc_sent_lens), np.std(doc_sent_lens)) #doc len 524.2710253674668 273.0 3027.1638516690828
print("doc sent len net", np.mean(doc_sent_lens_net), np.median(doc_sent_lens_net), np.std(doc_sent_lens_net)) #doc len net 367.15037189100633 197.0 840.446737502712
# 오류 수집
print("-----------COLLECT ERRORS")
errors_data, errors_data_geureo, errors_data_euddeuk, errors_data_ol, error_sent_tokenized = analyze.get_search_result_data(data, find_error = True)
with open("error_files.txt", "wb") as f:
pickle.dump((errors_data, errors_data_geureo, errors_data_euddeuk, errors_data_ol, error_sent_tokenized), f)
print("-----------complete1: pickle dump")
print("-----------COLLECT NONERRORS")
nonerrors_data, nonerrors_data_geureo, nonerrors_data_euddeuk, nonerrors_data_ol, nonerror_sent_tokenized = analyze.get_search_result_data(data, find_error = False)
with open("nonerror_files.txt", "wb") as f:
pickle.dump((nonerrors_data, nonerrors_data_geureo, nonerrors_data_euddeuk, nonerrors_data_ol, nonerror_sent_tokenized), f)
print("-----------complete2: pickle dump")
"""
#1. error form, nonerror form 확인
# pickle file 읽고 확인하기
with open("error_files.txt", "rb") as f:
error_files = pickle.load(f)
with open("nonerror_files.txt", "rb") as f:
nonerror_files = pickle.load(f)
errors_data, errors_data_geureo, errors_data_euddeuk, errors_data_ol, error_sent_tokenized = error_files
nonerrors_data, nonerrors_data_geureo, nonerrors_data_euddeuk, nonerrors_data_ol, nonerror_sent_tokenized = nonerror_files
# 오류/기본형 빈도 자료
"""print("**********ERROR***********")
print("========errors:", f"geureo: {len(errors_data_geureo)}, euddeuk: {len(errors_data_euddeuk)}, ol: {len(errors_data_ol)}")
datas_error = (errors_data_geureo, errors_data_euddeuk, errors_data_ol)
analyze.print_data(datas_error)
print("**********NONERROR***********")
print("========nonerrors:", f"geureo: {len(nonerrors_data_geureo)}, euddeuk: {len(nonerrors_data_euddeuk)}, ol: {len(nonerrors_data_ol)}")
datas_nonerror = (nonerrors_data_geureo, nonerrors_data_euddeuk, nonerrors_data_ol)
analyze.print_data(datas_nonerror)"""
# 오류,기본형 형태소 분석 빈도 조사
def extend_list_elements(mylist):
extended_list = []
for e in mylist:
extended_list.extend(e)
return extended_list
def pprint_list(mylist):
for e in mylist:
print(e)
def get_freqdict_list(mylist):
mylist = extend_list_elements(mylist)
return sorted(Counter(mylist).items(), key=lambda x: x[1], reverse=True)
def get_freqdict_josa_eomi(freqdict_list):
ej = [ ((form, tag), freq) for ((form, tag), freq) in freqdict_list if tag.startswith("E") or tag.startswith("J")]
j = [ ((form, tag), freq) for ((form, tag), freq) in freqdict_list if tag.startswith("J")]
e = [ ((form, tag), freq) for ((form, tag), freq) in freqdict_list if tag.startswith("E")]
return (ej, j, e)
"""errors_data_geureo_tokenized = mystats.tokenize_morpheme(errors_data_geureo)
errors_data_euddeuk_tokenized = mystats.tokenize_morpheme(errors_data_euddeuk)
errors_data_ol_tokenized = mystats.tokenize_morpheme(errors_data_ol)
nonerrors_data_geureo_tokenized = mystats.tokenize_morpheme(nonerrors_data_geureo)
nonerrors_data_euddeuk_tokenized = mystats.tokenize_morpheme(nonerrors_data_euddeuk)
nonerrors_data_ol_tokenized = mystats.tokenize_morpheme(nonerrors_data_ol)
# output_morpheme_freqdict_init.txt
f1 = get_freqdict_list(errors_data_geureo_tokenized)
f2 = get_freqdict_list(errors_data_euddeuk_tokenized)
f3 = get_freqdict_list(errors_data_ol_tokenized)
print("***************ERROR")
for i, f in enumerate((f1, f2, f3)):
print(f"==============DATA{i+1}")
print(sum([e[1] for e in f]))
#pprint_list(get_freqdict_josa_eomi(f))
pprint_list(f)
print()
print()
f4 = get_freqdict_list(nonerrors_data_geureo_tokenized)
f5 = get_freqdict_list(nonerrors_data_euddeuk_tokenized)
f6 = get_freqdict_list(nonerrors_data_ol_tokenized)
print("***************NONERROR")
for i, f in enumerate((f4, f5, f6)):
print(f"==============DATA{i+1}")
print(sum([e[1] for e in f]))
#pprint_list(get_freqdict_josa_eomi(f))
pprint_list(f)
print()
print()"""
# 검토 마친 오류/비오류 목록 -> 객체로 저장
def get_morph_data(filename):
with open(filename, "r", encoding = "utf-8") as f:
morph = f.readlines()
morph_data = []
for line in morph:
line = line.strip().split("\t")
try:
line[1] = int(line[1])
line[4] = [tuple([i.strip() for i in e.split(",")]) for e in line[4].split("-")]
morph_data.append((line[1], line[3], line[4]))
except:
continue
return morph_data
error_morph_data = get_morph_data("output_error_morph_tokenized_kkma.txt")
nonerror_morph_data = get_morph_data("output_nonerror_morph_tokenized_kkma.txt")
error_morph_data_geureo = []
error_morph_data_euddeuk = []
error_morph_data_ol = []
nonerror_morph_data_geureo = []
nonerror_morph_data_euddeuk = []
nonerror_morph_data_ol = []
for i in error_morph_data:
if i[1].startswith("그"):
error_morph_data_geureo.append(i)
elif i[1].startswith("어"):
error_morph_data_euddeuk.append(i)
elif i[1].startswith("옳"):
error_morph_data_ol.append(i)
else:
print("error", i)
for i in nonerror_morph_data:
if i[1].startswith("그"):
nonerror_morph_data_geureo.append(i)
elif i[1].startswith("어"):
nonerror_morph_data_euddeuk.append(i)
elif i[1].startswith("올"):
nonerror_morph_data_ol.append(i)
else:
print("error", i)
#output_error_morph_tokenized_reviewed.txt
"""
pprint_list(error_morph_data_geureo)
print()
pprint_list(error_morph_data_euddeuk)
print()
pprint_list(error_morph_data_ol)
"""
# output_nonerror_morph_tokenized_reviewed.txt
"""
pprint_list(nonerror_morph_data_geureo)
print()
pprint_list(nonerror_morph_data_euddeuk)
print()
pprint_list(nonerror_morph_data_ol)
"""
def get_total_error_num(data):
num = 0
for line in data:
num += line[0]
return num
def get_total_morph_num(data):
sum = 0
for line in data:
morph_num = len(line[2])
sum += (morph_num) * line[0]
return sum
def get_morph_num(data, init_tag):
sum = 0
for line in data:
for morph in line[2]:
if morph[1].startswith(init_tag):
sum += line[0] #TYPE: sum += 1
return sum
def get_mean_morph_num(data):
sum = 0
num = 0
for line in data:
morph_num = len(line[2])
sum += (morph_num) * line[0]
num += line[0]
return round(sum / num, 2)
def get_mean_form_len(data):
sum = 0
num = 0
for line in data:
form_len = len(line[1])
sum += (form_len * line[0])
num += line[0]
return round(sum / num, 2)
data_morph_error = (error_morph_data_geureo, error_morph_data_euddeuk, error_morph_data_ol)
data_morph_nonerror = (nonerror_morph_data_geureo, nonerror_morph_data_euddeuk, nonerror_morph_data_ol)
"""
# output_morph_freqdict.txt
print("========error")
for data in data_morph_error:
print("word token num", get_total_error_num(data))
print("word type num", len(data))
print("morph token num", get_total_morph_num(data))
print("mean morph num", get_mean_morph_num(data))
print("mean form len", get_mean_form_len(data))
print("X num", get_morph_num(data, "X"))
#print("E num", get_morph_num(data, "E"))
print("EP num", get_morph_num(data, "EP"))
print("EF num", get_morph_num(data, "EF"))
print("EC num", get_morph_num(data, "EC"))
print("ET num", get_morph_num(data, "ET"))
print("J num", get_morph_num(data, "J"))
print()
print()
print()
print("===========nonerror")
for data in data_morph_nonerror:
print("token num", get_total_error_num(data))
print("type num", len(data))
print("morph token num", get_total_morph_num(data))
print("mean morph num", get_mean_morph_num(data))
print("mean form len", get_mean_form_len(data))
print("X num", get_morph_num(data, "X"))
print("E num", get_morph_num(data, "E"))
print("EP num", get_morph_num(data, "EP"))
print("EF num", get_morph_num(data, "EF"))
print("EC num", get_morph_num(data, "EC"))
print("ET num", get_morph_num(data, "ET"))
print("J num", get_morph_num(data, "J"))
print()
"""
def collect_morphs(datas):
data_morph_list = []
for data in datas:
morphs = []
for line in data:
freq = line[0]
morph = line[2]
for i in range(freq):
morphs.extend(morph)
data_morph_list.append(morphs)
return data_morph_list
def find_key_freqdict(form, tag, freq, search_key):
mylist = []
if (tag.startswith(search_key)):
mylist.append(((form, tag), freq))
return mylist
morph_errors = collect_morphs(data_morph_error)
morph_nonerrors = collect_morphs(data_morph_nonerror)
search_key = ("X", "EP", "EF", "EC", "ET", "J")
aa = (morph_errors, morph_nonerrors)
# output_morph_freqdict_sort_by_tag.txt
"""
for i, item in enumerate(aa):
for j, mylist in enumerate(item):
print(f"=================={i+1} - {j+1}")
freqdict = sorted(Counter(mylist).items(), key=lambda x: x[1], reverse=True)
for key in search_key:
find_key = []
print(freqdict[0])
for k, v in freqdict:
form = k[0]
tag = k[1]
freq = v
find_key.extend(find_key_freqdict(form, tag, freq, key))
print(f"----{key}: {find_key}")
print()
print()
print()
"""