-
Notifications
You must be signed in to change notification settings - Fork 870
/
objdetect.go
562 lines (480 loc) · 19.3 KB
/
objdetect.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
package gocv
/*
#include <stdlib.h>
#include "objdetect.h"
*/
import "C"
import (
"image"
"unsafe"
)
// CascadeClassifier is a cascade classifier class for object detection.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html
type CascadeClassifier struct {
p C.CascadeClassifier
}
// NewCascadeClassifier returns a new CascadeClassifier.
func NewCascadeClassifier() CascadeClassifier {
return CascadeClassifier{p: C.CascadeClassifier_New()}
}
// Close deletes the CascadeClassifier's pointer.
func (c *CascadeClassifier) Close() error {
C.CascadeClassifier_Close(c.p)
c.p = nil
return nil
}
// Load cascade classifier from a file.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#a1a5884c8cc749422f9eb77c2471958bc
func (c *CascadeClassifier) Load(name string) bool {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
return C.CascadeClassifier_Load(c.p, cName) != 0
}
// DetectMultiScale detects objects of different sizes in the input Mat image.
// The detected objects are returned as a slice of image.Rectangle structs.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
func (c *CascadeClassifier) DetectMultiScale(img Mat) []image.Rectangle {
ret := C.CascadeClassifier_DetectMultiScale(c.p, img.p)
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// DetectMultiScaleWithParams calls DetectMultiScale but allows setting parameters
// to values other than just the defaults.
//
// For further details, please see:
// http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
func (c *CascadeClassifier) DetectMultiScaleWithParams(img Mat, scale float64,
minNeighbors, flags int, minSize, maxSize image.Point) []image.Rectangle {
minSz := C.struct_Size{
width: C.int(minSize.X),
height: C.int(minSize.Y),
}
maxSz := C.struct_Size{
width: C.int(maxSize.X),
height: C.int(maxSize.Y),
}
ret := C.CascadeClassifier_DetectMultiScaleWithParams(c.p, img.p, C.double(scale),
C.int(minNeighbors), C.int(flags), minSz, maxSz)
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// HOGDescriptor is a Histogram Of Gradiants (HOG) for object detection.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a723b95b709cfd3f95cf9e616de988fc8
type HOGDescriptor struct {
p C.HOGDescriptor
}
// NewHOGDescriptor returns a new HOGDescriptor.
func NewHOGDescriptor() HOGDescriptor {
return HOGDescriptor{p: C.HOGDescriptor_New()}
}
// Close deletes the HOGDescriptor's pointer.
func (h *HOGDescriptor) Close() error {
C.HOGDescriptor_Close(h.p)
h.p = nil
return nil
}
// DetectMultiScale detects objects in the input Mat image.
// The detected objects are returned as a slice of image.Rectangle structs.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
func (h *HOGDescriptor) DetectMultiScale(img Mat) []image.Rectangle {
ret := C.HOGDescriptor_DetectMultiScale(h.p, img.p)
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// DetectMultiScaleWithParams calls DetectMultiScale but allows setting parameters
// to values other than just the defaults.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
func (h *HOGDescriptor) DetectMultiScaleWithParams(img Mat, hitThresh float64,
winStride, padding image.Point, scale, finalThreshold float64, useMeanshiftGrouping bool) []image.Rectangle {
wSz := C.struct_Size{
width: C.int(winStride.X),
height: C.int(winStride.Y),
}
pSz := C.struct_Size{
width: C.int(padding.X),
height: C.int(padding.Y),
}
ret := C.HOGDescriptor_DetectMultiScaleWithParams(h.p, img.p, C.double(hitThresh),
wSz, pSz, C.double(scale), C.double(finalThreshold), C.bool(useMeanshiftGrouping))
defer C.Rects_Close(ret)
return toRectangles(ret)
}
// HOGDefaultPeopleDetector returns a new Mat with the HOG DefaultPeopleDetector.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
func HOGDefaultPeopleDetector() Mat {
return newMat(C.HOG_GetDefaultPeopleDetector())
}
// SetSVMDetector sets the data for the HOGDescriptor.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a09e354ad701f56f9c550dc0385dc36f1
func (h *HOGDescriptor) SetSVMDetector(det Mat) error {
C.HOGDescriptor_SetSVMDetector(h.p, det.p)
return nil
}
// GroupRectangles groups the object candidate rectangles.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d54/group__objdetect.html#ga3dba897ade8aa8227edda66508e16ab9
func GroupRectangles(rects []image.Rectangle, groupThreshold int, eps float64) []image.Rectangle {
cRectArray := make([]C.struct_Rect, len(rects))
for i, r := range rects {
cRect := C.struct_Rect{
x: C.int(r.Min.X),
y: C.int(r.Min.Y),
width: C.int(r.Size().X),
height: C.int(r.Size().Y),
}
cRectArray[i] = cRect
}
cRects := C.struct_Rects{
rects: (*C.Rect)(&cRectArray[0]),
length: C.int(len(rects)),
}
ret := C.GroupRectangles(cRects, C.int(groupThreshold), C.double(eps))
return toRectangles(ret)
}
// QRCodeDetector groups the object candidate rectangles.
//
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html
type QRCodeDetector struct {
p C.QRCodeDetector
}
// newQRCodeDetector returns a new QRCodeDetector from a C QRCodeDetector
func newQRCodeDetector(p C.QRCodeDetector) QRCodeDetector {
return QRCodeDetector{p: p}
}
func NewQRCodeDetector() QRCodeDetector {
return newQRCodeDetector(C.QRCodeDetector_New())
}
func (a *QRCodeDetector) Close() error {
C.QRCodeDetector_Close(a.p)
a.p = nil
return nil
}
// DetectAndDecode Both detects and decodes QR code.
//
// Returns true as long as some QR code was detected even in case where the decoding failed
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a7290bd6a5d59b14a37979c3a14fbf394
func (a *QRCodeDetector) DetectAndDecode(input Mat, points *Mat, straight_qrcode *Mat) string {
goResult := C.GoString(C.QRCodeDetector_DetectAndDecode(a.p, input.p, points.p, straight_qrcode.p))
return string(goResult)
}
// Detect detects QR code in image and returns the quadrangle containing the code.
//
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a64373f7d877d27473f64fe04bb57d22b
func (a *QRCodeDetector) Detect(input Mat, points *Mat) bool {
result := C.QRCodeDetector_Detect(a.p, input.p, points.p)
return bool(result)
}
// Decode decodes QR code in image once it's found by the detect() method. Returns UTF8-encoded output string or empty string if the code cannot be decoded.
//
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a4172c2eb4825c844fb1b0ae67202d329
func (a *QRCodeDetector) Decode(input Mat, points Mat, straight_qrcode *Mat) string {
goResult := C.GoString(C.QRCodeDetector_DetectAndDecode(a.p, input.p, points.p, straight_qrcode.p))
return string(goResult)
}
// Detects QR codes in image and finds of the quadrangles containing the codes.
//
// Each quadrangle would be returned as a row in the `points` Mat and each point is a Vecf.
// Returns true if QR code was detected
// For usage please see TestQRCodeDetector
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#aaf2b6b2115b8e8fbc9acf3a8f68872b6
func (a *QRCodeDetector) DetectMulti(input Mat, points *Mat) bool {
result := C.QRCodeDetector_DetectMulti(a.p, input.p, points.p)
return bool(result)
}
// Detects QR codes in image, finds the quadrangles containing the codes, and decodes the QRCodes to strings.
//
// Each quadrangle would be returned as a row in the `points` Mat and each point is a Vecf.
// Returns true as long as some QR code was detected even in case where the decoding failed
// For usage please see TestQRCodeDetector
// For further details, please see:
// https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a188b63ffa17922b2c65d8a0ab7b70775
func (a *QRCodeDetector) DetectAndDecodeMulti(input Mat, decoded []string, points *Mat, qrCodes []Mat) bool {
cDecoded := C.CStrings{}
defer C.CStrings_Close(cDecoded)
cQrCodes := C.struct_Mats{}
defer C.Mats_Close(cQrCodes)
success := C.QRCodeDetector_DetectAndDecodeMulti(a.p, input.p, &cDecoded, points.p, &cQrCodes)
if !success {
return bool(success)
}
tmpCodes := make([]Mat, cQrCodes.length)
for i := C.int(0); i < cQrCodes.length; i++ {
tmpCodes[i].p = C.Mats_get(cQrCodes, i)
}
for _, qr := range tmpCodes {
qrCodes = append(qrCodes, qr)
}
for _, s := range toGoStrings(cDecoded) {
decoded = append(decoded, s)
}
return bool(success)
}
type FaceDetectorYN struct {
p C.FaceDetectorYN
}
// NewFaceDetectorYN Creates an instance of face detector with given parameters.
//
// modelPath: the path to the requested model
//
// configPath: the path to the config file for compability, which is not requested for ONNX models
//
// size: the size of the input image
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#a5f7fb43c60c95ca5ebab78483de02516
func NewFaceDetectorYN(modelPath string, configPath string, size image.Point) FaceDetectorYN {
c_model_path := C.CString(modelPath)
defer C.free(unsafe.Pointer(c_model_path))
c_config_path := C.CString(configPath)
defer C.free(unsafe.Pointer(c_config_path))
c_size := C.Size{
width: C.int(size.X),
height: C.int(size.Y),
}
return FaceDetectorYN{p: C.FaceDetectorYN_Create(c_model_path, c_config_path, c_size)}
}
// NewFaceDetectorYNWithParams Creates an instance of face detector with given parameters.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#a5f7fb43c60c95ca5ebab78483de02516
func NewFaceDetectorYNWithParams(modelPath string, configPath string, size image.Point, scoreThreshold float32, nmsThreshold float32, topK int, backendId int, targetId int) FaceDetectorYN {
c_model_path := C.CString(modelPath)
defer C.free(unsafe.Pointer(c_model_path))
c_config_path := C.CString(configPath)
defer C.free(unsafe.Pointer(c_config_path))
c_size := C.Size{
width: C.int(size.X),
height: C.int(size.Y),
}
return FaceDetectorYN{p: C.FaceDetectorYN_Create_WithParams(c_model_path, c_config_path, c_size, C.float(scoreThreshold), C.float(nmsThreshold), C.int(topK), C.int(backendId), C.int(targetId))}
}
// NewFaceDetectorYNFromBytes Creates an instance of face detector with given parameters.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#aa0796a4bfe2d4709bef81abbae9a927a
func NewFaceDetectorYNFromBytes(framework string, bufferModel []byte, bufferConfig []byte, size image.Point) FaceDetectorYN {
c_framework := C.CString(framework)
defer C.free(unsafe.Pointer(c_framework))
c_size := C.Size{
width: C.int(size.X),
height: C.int(size.Y),
}
return FaceDetectorYN{p: C.FaceDetectorYN_Create_FromBytes(c_framework,
unsafe.Pointer(unsafe.SliceData(bufferModel)), C.int(len(bufferModel)),
unsafe.Pointer(unsafe.SliceData(bufferConfig)), C.int(len(bufferConfig)), c_size)}
}
// NewFaceDetectorYNFromBuffers Creates an instance of face detector with given parameters.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#aa0796a4bfe2d4709bef81abbae9a927a
func NewFaceDetectorYNFromBytesWithParams(framework string, bufferModel []byte, bufferConfig []byte, size image.Point, scoreThreshold float32, nmsThreshold float32, topK int, backendId int, targetId int) FaceDetectorYN {
c_framework := C.CString(framework)
defer C.free(unsafe.Pointer(c_framework))
c_size := C.Size{
width: C.int(size.X),
height: C.int(size.Y),
}
return FaceDetectorYN{p: C.FaceDetectorYN_Create_FromBytes_WithParams(c_framework,
unsafe.Pointer(unsafe.SliceData(bufferModel)), C.int(len(bufferModel)),
unsafe.Pointer(unsafe.SliceData(bufferConfig)), C.int(len(bufferConfig)), c_size,
C.float(scoreThreshold), C.float(nmsThreshold), C.int(topK), C.int(backendId), C.int(targetId))}
}
func (fd *FaceDetectorYN) Close() {
C.FaceDetectorYN_Close(fd.p)
}
// Detect Detects faces in the input image.
//
// image: an image to detect
//
// faces: detection results stored in a 2D cv::Mat of shape [num_faces, 15]
//
// 0-1: x, y of bbox top left corner
//
// 2-3: width, height of bbox
//
// 4-5: x, y of right eye (blue point in the example image)
//
// 6-7: x, y of left eye (red point in the example image)
//
// 8-9: x, y of nose tip (green point in the example image)
//
// 10-11: x, y of right corner of mouth (pink point in the example image)
//
// 12-13: x, y of left corner of mouth (yellow point in the example image)
//
// 14: face score
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#ac05bd075ca3e6edc0e328927aae6f45b
func (fd *FaceDetectorYN) Detect(image Mat, faces *Mat) int {
c_rv := C.FaceDetectorYN_Detect(fd.p, image.p, faces.p)
return int(c_rv)
}
func (fd *FaceDetectorYN) GetInputSize() image.Point {
sz := C.FaceDetectorYN_GetInputSize(fd.p)
return image.Pt(int(sz.width), int(sz.height))
}
func (fd *FaceDetectorYN) GetNMSThreshold() float32 {
t := C.FaceDetectorYN_GetNMSThreshold(fd.p)
return float32(t)
}
func (fd *FaceDetectorYN) GetScoreThreshold() float32 {
t := C.FaceDetectorYN_GetScoreThreshold(fd.p)
return float32(t)
}
func (fd *FaceDetectorYN) GetTopK() int {
i := C.FaceDetectorYN_GetTopK(fd.p)
return int(i)
}
// SetInputSize Set the size for the network input, which overwrites the input size of creating model.
// Call this method when the size of input image does not match the input size when creating model.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#a072418e5ce7beeb69c41edda75c41d2e
func (fd *FaceDetectorYN) SetInputSize(sz image.Point) {
c_sz := C.Size{
width: C.int(sz.X),
height: C.int(sz.Y),
}
C.FaceDetectorYN_SetInputSize(fd.p, c_sz)
}
// SetNMSThreshold Set the Non-maximum-suppression threshold to suppress
// bounding boxes that have IoU greater than the given value.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#ab6011efee7e12dca3857d82de5269ac5
func (fd *FaceDetectorYN) SetNMSThreshold(nmsThreshold float32) {
C.FaceDetectorYN_SetNMSThreshold(fd.p, C.float(nmsThreshold))
}
// SetScoreThreshold Set the score threshold to filter out bounding boxes of score less than the given value.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#a37f3c23b82158fac7fdad967d315f85a
func (fd *FaceDetectorYN) SetScoreThreshold(scoreThreshold float32) {
C.FaceDetectorYN_SetScoreThreshold(fd.p, C.float(scoreThreshold))
}
// SetTopK Set the number of bounding boxes preserved before NMS.
//
// For further details, please see:
// https://docs.opencv.org/4.x/df/d20/classcv_1_1FaceDetectorYN.html#aa88d20e1e2df75ea36b851534089856a
func (fd *FaceDetectorYN) SetTopK(topK int) {
C.FaceDetectorYN_SetTopK(fd.p, C.int(topK))
}
type FaceRecognizerSFDisType int
const (
FaceRecognizerSFDisTypeCosine FaceRecognizerSFDisType = 0
FaceRecognizerSFDisTypeNormL2 FaceRecognizerSFDisType = 1
)
type FaceRecognizerSF struct {
p C.FaceRecognizerSF
}
// NewFaceRecognizerSF Creates an instance with given parameters.
//
// model: the path of the onnx model used for face recognition
//
// config: the path to the config file for compability, which is not requested for ONNX models
//
// For further details, please see:
// https://docs.opencv.org/4.x/da/d09/classcv_1_1FaceRecognizerSF.html#a04df90b0cd7d26d350acd92621a35743
func NewFaceRecognizerSF(modelPath string, configPath string) FaceRecognizerSF {
c_model := C.CString(modelPath)
defer C.free(unsafe.Pointer(c_model))
c_config := C.CString(configPath)
defer C.free(unsafe.Pointer(c_config))
return FaceRecognizerSF{p: C.FaceRecognizerSF_Create(c_model, c_config)}
}
// NewFaceRecognizerSFWithParams Creates an instance with given parameters.
//
// model: the path of the onnx model used for face recognition
//
// config: the path to the config file for compability, which is not requested for ONNX models
//
// backend_id: the id of backend
//
// target_id: the id of target device
//
// For further details, please see:
// https://docs.opencv.org/4.x/da/d09/classcv_1_1FaceRecognizerSF.html#a04df90b0cd7d26d350acd92621a35743
func NewFaceRecognizerSFWithParams(modelPath string, configPath string, backendId int, targetId int) FaceRecognizerSF {
c_model := C.CString(modelPath)
defer C.free(unsafe.Pointer(c_model))
c_config := C.CString(configPath)
defer C.free(unsafe.Pointer(c_config))
return FaceRecognizerSF{p: C.FaceRecognizerSF_Create_WithParams(c_model, c_config, C.int(backendId), C.int(targetId))}
}
// Close Releases FaceRecognizerSF resources.
func (fr *FaceRecognizerSF) Close() {
C.FaceRecognizerSF_Close(fr.p)
}
// AlignCrop Aligns detected face with the source input image and crops it.
//
// srcImg: input image
//
// faceBox: the detected face result from the input image
//
// alignedImg: output aligned image
//
// For further details, please see:
// https://docs.opencv.org/4.x/da/d09/classcv_1_1FaceRecognizerSF.html#a84492908abecbc9362b4ddc8d46b8345
func (fr *FaceRecognizerSF) AlignCrop(srcImg Mat, faceBox Mat, alignedImg *Mat) {
C.FaceRecognizerSF_AlignCrop(fr.p, srcImg.p, faceBox.p, alignedImg.p)
}
// Feature Extracts face feature from aligned image.
//
// alignedImg: input aligned image
//
// faceFeature: output face feature
//
// For further details, please see:
// https://docs.opencv.org/4.x/da/d09/classcv_1_1FaceRecognizerSF.html#ab1b4a3c12213e89091a490c573dc5aba
func (fr *FaceRecognizerSF) Feature(alignedImg Mat, faceFeature *Mat) {
C.FaceRecognizerSF_Feature(fr.p, alignedImg.p, faceFeature.p)
}
// Match Calculates the distance between two face features.
//
// faceFeature1: the first input feature
//
// faceFeature2: the second input feature of the same size and the same type as face_feature1
//
// For further details, please see:
// https://docs.opencv.org/4.x/da/d09/classcv_1_1FaceRecognizerSF.html#a2f0362ca1e64320a1f3ba7e1386d0219
func (fr *FaceRecognizerSF) Match(faceFeature1 Mat, faceFeature2 Mat) float32 {
rv := C.FaceRecognizerSF_Match(fr.p, faceFeature1.p, faceFeature2.p)
return float32(rv)
}
// MatchWithParams Calculates the distance between two face features.
//
// faceFeature1: the first input feature
//
// faceFeature2: the second input feature of the same size and the same type as face_feature1
//
// disType: defines how to calculate the distance between two face features
//
// For further details, please see:
// https://docs.opencv.org/4.x/da/d09/classcv_1_1FaceRecognizerSF.html#a2f0362ca1e64320a1f3ba7e1386d0219
func (fr *FaceRecognizerSF) MatchWithParams(faceFeature1 Mat, faceFeature2 Mat, disType FaceRecognizerSFDisType) float32 {
rv := C.FaceRecognizerSF_Match_WithParams(fr.p, faceFeature1.p, faceFeature2.p, C.int(disType))
return float32(rv)
}