Skip to content

Latest commit

 

History

History
107 lines (94 loc) · 3.15 KB

README.md

File metadata and controls

107 lines (94 loc) · 3.15 KB

Drone landing detector

Description

  • A simple model to detect the landing zone for drone.
  • My team's term-end project for the course Image Processing INT3404 2 at UET.

Group number 12

How to run

  • Clone the repository:

    git clone https://github.com/huythai855/drone-landing-detector
  • Get into the folder:

    cd drone-landing-detector
  • Install dependencies:

    pip install -r requirements.txt
  • Copy folder test_images and file labels.csv to the root folder of the project (as the example). ⚠️ PLEASE NOTE that the folder structure should be:

    (root)
      │
      ├── README.md
      ├── requirements.txt
      │
      ├── models
      │   ├── trained
      │   |   └── best.pt                <- The trained model
      │   └── common.py
      │   └── experimental.py
      │   └── yolo.py
      │
      ├── segment
      │   └── predict.py
      │
      ├── utils/...
      │
      ├── test_images                     <- Images folder
      │   └── img_example_001.jpg        
      │   └── img_example_002.jpg
      │
      ├── labels.csv                      <- Label of the images
      │
      ├── detect.py
      ├── hubconf.py
      ├── trained.py
      ├── main.py
      ├── landing_detector.py             <- Load trained model and predict
      ├── test.py                         <- Scoring file
      │
      └── yolov5s.pt                      <- The pretrained model
    
  • Run the scoring program:

    python python test.py test_images labels.csv

Demo

  • Demo result's scoring:
    Python 3.10.9 (main, Mar  1 2023, 18:23:06) [GCC 11.2.0] on linux
    Run time in: 0.00 s
    Total test images:  5
    filename:  img_train_593.jpg
    Fusing layers... 
    Adding AutoShape... 
    {'x1': 239, 'y1': 300, 'x2': 381, 'y2': 420} 
    
    filename:  img_train_451.jpg
    Fusing layers... 
    Adding AutoShape... 
    {'x1': 330, 'y1': 370, 'x2': 424, 'y2': 478} 
    
    filename:  img_train_330.jpg
    Fusing layers... 
    Adding AutoShape... 
    {'x1': 284, 'y1': 238, 'x2': 370, 'y2': 264} 
    
    filename:  img_train_156.jpg
    Fusing layers... 
    Adding AutoShape... 
    {'x1': 256, 'y1': 270, 'x2': 508, 'y2': 414} 
    
    filename:  img_train_500.jpg
    Fusing layers... 
    Adding AutoShape... 
    {'x1': 212, 'y1': 282, 'x2': 242, 'y2': 382} 
    
    [0.9501630181648812, 0.9255329318420801, 0.8578161822466615, 0.9271523178807947, 0.8490566037735849]
    Map score: 0.860000
    Run time:  1.7516562938690186