-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathdc_crn.py
332 lines (287 loc) · 11.4 KB
/
dc_crn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import torch
import torch.nn as nn
import os
import sys
from show import show_params, show_model
import torch.nn.functional as F
from conv_stft import ConvSTFT, ConviSTFT
from complexnn import ComplexConv2d, ComplexConvTranspose2d, NavieComplexLSTM, complex_cat, ComplexBatchNorm
class DCCRN(nn.Module):
def __init__(
self,
rnn_layers=2,
rnn_units=128,
win_len=400,
win_inc=100,
fft_len=512,
win_type='hann',
masking_mode='E',
use_clstm=False,
use_cbn = False,
kernel_size=5,
kernel_num=[16,32,64,128,256,256]
):
'''
rnn_layers: the number of lstm layers in the crn,
rnn_units: for clstm, rnn_units = real+imag
'''
super(DCCRN, self).__init__()
# for fft
self.win_len = win_len
self.win_inc = win_inc
self.fft_len = fft_len
self.win_type = win_type
input_dim = win_len
output_dim = win_len
self.rnn_units = rnn_units
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_layers = rnn_layers
self.kernel_size = kernel_size
#self.kernel_num = [2, 8, 16, 32, 128, 128, 128]
#self.kernel_num = [2, 16, 32, 64, 128, 256, 256]
self.kernel_num = [2]+kernel_num
self.masking_mode = masking_mode
self.use_clstm = use_clstm
#bidirectional=True
bidirectional=False
fac = 2 if bidirectional else 1
fix=True
self.fix = fix
self.stft = ConvSTFT(self.win_len, self.win_inc, fft_len, self.win_type, 'complex', fix=fix)
self.istft = ConviSTFT(self.win_len, self.win_inc, fft_len, self.win_type, 'complex', fix=fix)
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
for idx in range(len(self.kernel_num)-1):
self.encoder.append(
nn.Sequential(
#nn.ConstantPad2d([0, 0, 0, 0], 0),
ComplexConv2d(
self.kernel_num[idx],
self.kernel_num[idx+1],
kernel_size=(self.kernel_size, 2),
stride=(2, 1),
padding=(2, 1)
),
nn.BatchNorm2d(self.kernel_num[idx+1]) if not use_cbn else ComplexBatchNorm(self.kernel_num[idx+1]),
nn.PReLU()
)
)
hidden_dim = self.fft_len//(2**(len(self.kernel_num)))
if self.use_clstm:
rnns = []
for idx in range(rnn_layers):
rnns.append(
NavieComplexLSTM(
input_size= hidden_dim*self.kernel_num[-1] if idx == 0 else self.rnn_units,
hidden_size=self.rnn_units,
bidirectional=bidirectional,
batch_first=False,
projection_dim= hidden_dim*self.kernel_num[-1] if idx == rnn_layers-1 else None,
)
)
self.enhance = nn.Sequential(*rnns)
else:
self.enhance = nn.LSTM(
input_size= hidden_dim*self.kernel_num[-1],
hidden_size=self.rnn_units,
num_layers=2,
dropout=0.0,
bidirectional=bidirectional,
batch_first=False
)
self.tranform = nn.Linear(self.rnn_units * fac, hidden_dim*self.kernel_num[-1])
for idx in range(len(self.kernel_num)-1, 0, -1):
if idx != 1:
self.decoder.append(
nn.Sequential(
ComplexConvTranspose2d(
self.kernel_num[idx]*2,
self.kernel_num[idx-1],
kernel_size =(self.kernel_size, 2),
stride=(2, 1),
padding=(2,0),
output_padding=(1,0)
),
nn.BatchNorm2d(self.kernel_num[idx-1]) if not use_cbn else ComplexBatchNorm(self.kernel_num[idx-1]),
#nn.ELU()
nn.PReLU()
)
)
else:
self.decoder.append(
nn.Sequential(
ComplexConvTranspose2d(
self.kernel_num[idx]*2,
self.kernel_num[idx-1],
kernel_size =(self.kernel_size, 2),
stride=(2, 1),
padding=(2,0),
output_padding=(1,0)
),
)
)
show_model(self)
show_params(self)
self.flatten_parameters()
def flatten_parameters(self):
if isinstance(self.enhance, nn.LSTM):
self.enhance.flatten_parameters()
def forward(self, inputs, lens=None):
specs = self.stft(inputs)
real = specs[:,:self.fft_len//2+1]
imag = specs[:,self.fft_len//2+1:]
spec_mags = torch.sqrt(real**2+imag**2+1e-8)
spec_mags = spec_mags
spec_phase = torch.atan2(imag, real)
spec_phase = spec_phase
cspecs = torch.stack([real,imag],1)
cspecs = cspecs[:,:,1:]
'''
means = torch.mean(cspecs, [1,2,3], keepdim=True)
std = torch.std(cspecs, [1,2,3], keepdim=True )
normed_cspecs = (cspecs-means)/(std+1e-8)
out = normed_cspecs
'''
out = cspecs
encoder_out = []
for idx, layer in enumerate(self.encoder):
out = layer(out)
# print('encoder', out.size())
encoder_out.append(out)
batch_size, channels, dims, lengths = out.size()
out = out.permute(3, 0, 1, 2)
if self.use_clstm:
r_rnn_in = out[:,:,:channels//2]
i_rnn_in = out[:,:,channels//2:]
r_rnn_in = torch.reshape(r_rnn_in, [lengths, batch_size, channels//2*dims])
i_rnn_in = torch.reshape(i_rnn_in, [lengths, batch_size, channels//2*dims])
r_rnn_in, i_rnn_in = self.enhance([r_rnn_in, i_rnn_in])
r_rnn_in = torch.reshape(r_rnn_in, [lengths, batch_size, channels//2, dims])
i_rnn_in = torch.reshape(i_rnn_in, [lengths, batch_size, channels//2, dims])
out = torch.cat([r_rnn_in, i_rnn_in],2)
else:
# to [L, B, C, D]
out = torch.reshape(out, [lengths, batch_size, channels*dims])
out, _ = self.enhance(out)
out = self.tranform(out)
out = torch.reshape(out, [lengths, batch_size, channels, dims])
out = out.permute(1, 2, 3, 0)
for idx in range(len(self.decoder)):
out = complex_cat([out,encoder_out[-1 - idx]],1)
out = self.decoder[idx](out)
out = out[...,1:]
# print('decoder', out.size())
mask_real = out[:,0]
mask_imag = out[:,1]
mask_real = F.pad(mask_real, [0,0,1,0])
mask_imag = F.pad(mask_imag, [0,0,1,0])
if self.masking_mode == 'E' :
mask_mags = (mask_real**2+mask_imag**2)**0.5
real_phase = mask_real/(mask_mags+1e-8)
imag_phase = mask_imag/(mask_mags+1e-8)
mask_phase = torch.atan2(
imag_phase,
real_phase
)
#mask_mags = torch.clamp_(mask_mags,0,100)
mask_mags = torch.tanh(mask_mags)
est_mags = mask_mags*spec_mags
est_phase = spec_phase + mask_phase
real = est_mags*torch.cos(est_phase)
imag = est_mags*torch.sin(est_phase)
elif self.masking_mode == 'C':
real,imag = real*mask_real-imag*mask_imag, real*mask_imag+imag*mask_real
elif self.masking_mode == 'R':
real, imag = real*mask_real, imag*mask_imag
out_spec = torch.cat([real, imag], 1)
out_wav = self.istft(out_spec)
out_wav = torch.squeeze(out_wav, 1)
#out_wav = torch.tanh(out_wav)
out_wav = torch.clamp_(out_wav,-1,1)
return out_spec, out_wav
def get_params(self, weight_decay=0.0):
# add L2 penalty
weights, biases = [], []
for name, param in self.named_parameters():
if 'bias' in name:
biases += [param]
else:
weights += [param]
params = [{
'params': weights,
'weight_decay': weight_decay,
}, {
'params': biases,
'weight_decay': 0.0,
}]
return params
def loss(self, inputs, labels, loss_mode='SI-SNR'):
if loss_mode == 'MSE':
b, d, t = inputs.shape
labels[:,0,:]=0
labels[:,d//2,:]=0
return F.mse_loss(inputs, labels, reduction='mean')*d
elif loss_mode == 'SI-SNR':
#return -torch.mean(si_snr(inputs, labels))
return -(si_snr(inputs, labels))
elif loss_mode == 'MAE':
gth_spec, gth_phase = self.stft(labels)
b,d,t = inputs.shape
return torch.mean(torch.abs(inputs-gth_spec))*d
def remove_dc(data):
mean = torch.mean(data, -1, keepdim=True)
data = data - mean
return data
def l2_norm(s1, s2):
#norm = torch.sqrt(torch.sum(s1*s2, 1, keepdim=True))
#norm = torch.norm(s1*s2, 1, keepdim=True)
norm = torch.sum(s1*s2, -1, keepdim=True)
return norm
def si_snr(s1, s2, eps=1e-8):
#s1 = remove_dc(s1)
#s2 = remove_dc(s2)
s1_s2_norm = l2_norm(s1, s2)
s2_s2_norm = l2_norm(s2, s2)
s_target = s1_s2_norm/(s2_s2_norm+eps)*s2
e_nosie = s1 - s_target
target_norm = l2_norm(s_target, s_target)
noise_norm = l2_norm(e_nosie, e_nosie)
snr = 10*torch.log10((target_norm)/(noise_norm+eps)+eps)
return torch.mean(snr)
def test_complex():
torch.manual_seed(20)
inputs = torch.randn(10,2,256,10)
conv = ComplexConv2d(2,32,(3,1),(2,1),(1,0))
tconv = ComplexConvTranspose2d(32,2,(3,1),(2,1),(1,0),(1,0))
out = conv(inputs)
print(out.shape)
out = tconv(out)
print(out.shape)
if __name__ == '__main__':
torch.manual_seed(10)
torch.autograd.set_detect_anomaly(True)
inputs = torch.randn([10,16000*4]).clamp_(-1,1)
labels = torch.randn([10,16000*4]).clamp_(-1,1)
'''
# DCCRN-E
net = DCCRN(rnn_units=256,masking_mode='E')
outputs = net(inputs)[1]
loss = net.loss(outputs, labels, loss_mode='SI-SNR')
print(loss)
# DCCRN-R
net = DCCRN(rnn_units=256,masking_mode='R')
outputs = net(inputs)[1]
loss = net.loss(outputs, labels, loss_mode='SI-SNR')
print(loss)
# DCCRN-C
net = DCCRN(rnn_units=256,masking_mode='C')
outputs = net(inputs)[1]
loss = net.loss(outputs, labels, loss_mode='SI-SNR')
print(loss)
'''
# DCCRN-CL
net = DCCRN(rnn_units=256,masking_mode='E',use_clstm=True,kernel_num=[32, 64, 128, 256, 256,256])
outputs = net(inputs)[1]
loss = net.loss(outputs, labels, loss_mode='SI-SNR')
print(loss)