-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrainDTDriver.py
405 lines (311 loc) · 15.3 KB
/
TrainDTDriver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
'''
Created on Sep 18, 2015
@author: hustnn
'''
import copy
from random import randint
import Configuration
from Cluster import Cluster
from YARNScheduler import YARNScheduler
from WorkloadGenerator import WorkloadGenerator
from JobGenerator import JobGenerator
from Utility import Utility
# generate training dataset used by decision tree, (entropy of workload, fairness SLA, performance)
# the best performance corresponds to the target scheduler
def calTrainingData(workloadScale = 10, windowSize = 10):
pass
def genWindowBasedList(jobTypeList, windowSize):
windowNum = len(jobTypeList) / windowSize
w = []
for i in range(windowNum):
begin = i * windowSize
end = min(begin + windowSize, len(jobTypeList))
w.append(jobTypeList[begin:end])
return w
def swapItemByWindow(A, windowNum, swapNum):
if windowNum == 1:
return A
for i in range(swapNum):
r1 = randint(0, windowNum - 1)
r2 = r1
while (r2 == r1):
r2 = randint(0, windowNum - 1)
w1 = A[r1]
w2 = A[r2]
e1 = randint(0, len(w1) - 1)
e2 = randint(0, len(w2) - 1)
tmp = w1[e1]
w1[e1] = w2[e2]
w2[e2] = tmp
return A
def swapWindow(w, swapNum):
return swapItemByWindow(copy.deepcopy(w), len(w), swapNum)
def sortWindowBasedList(windowList):
for i in range(len(windowList)):
windowList[i] = sorted(windowList[i])
def genJobTypeListWithDifferentEntropy(jobTypeList, windowSize, swapNumList):
res = []
w = genWindowBasedList(jobTypeList, windowSize)
for swapNum in swapNumList:
wAfterSwap = swapWindow(w, swapNum)
sortWindowBasedList(wAfterSwap)
for jobs in wAfterSwap:
res.append(jobs)
return res
def swapJobTypeListInterWindow(jobTypeWindows, swapNumList, needSort):
windowList = []
for swapNum in swapNumList:
wAfterSwap = swapWindow(jobTypeWindows, swapNum)
if needSort:
sortWindowBasedList(wAfterSwap)
for window in wAfterSwap:
windowList.append(window)
return windowList
def genJobTypeList(num):
jobTypeList = []
memoryTypes = [0, 1, 2]
cpuTypes = [3, 4, 5]
diskTypes = [6, 7, 8]
networkTypes = [9, 10, 11]
jobTypes = [memoryTypes, cpuTypes, diskTypes, networkTypes]
for resTypes in jobTypes:
for i in range(num):
jobTypeList.append(resTypes[randint(0, 2)])
return jobTypeList
def genRandomJobTypeList(num, jobTypes):
jobTypeList = []
numJobType = len(jobTypes)
for i in range(num):
jobTypeList.append(jobTypes[randint(0, numJobType - 1)])
return jobTypeList
def genWinBasedJobTypeList(jobTypeList, windowSize, swapNumList):
return genJobTypeListWithDifferentEntropy(jobTypeList, windowSize, swapNumList)
def genJobInfoList(workloadSet):
fileName = Configuration.WORKLOAD_PATH + workloadSet
jobs = []
f = open(fileName, "r")
lines = f.readlines()
f.close()
for l in lines:
items = l.split(",")
jobInfo = {}
jobInfo["NumOfTasks"] = int(items[0])
jobInfo["TaskExecTime"] = int(items[1])
jobInfo["SubmitTime"] = int(items[2])
jobInfo["Memory"] = int(items[3])
jobInfo["CPU"] = int(items[4])
jobInfo["Disk"] = int(items[5])
jobInfo["Network"] = int(items[6])
jobInfo["Code"] = int(items[7])
jobs.append(jobInfo)
return jobs
#job type is the index of jobInfoList
def genJobs(jobTypeList, jobInfoList):
jobs = []
codes = []
jobCount = 0
for jobType in jobTypeList:
jobInfo = jobTypeList[jobType]
jobCount += 1
numOfTask = jobInfo["NumOfTasks"]
taskExecTime = jobInfo["TaskExecTime"]
submissionTime = jobInfo["SubmitTime"]
memory = jobInfo["Memory"]
cpu = jobInfo["CPU"]
disk = jobInfo["Disk"]
network = jobInfo["Network"]
code = jobInfo["Code"]
job = JobGenerator.genComputeIntensitveJob(str(jobCount), numOfTask, memory, cpu, disk, network,
taskExecTime, submissionTime)
jobs.append(job)
codes.append(code)
entropy = Utility.calEntropyOfVectorList(codes)
return jobs, entropy
def genYARNJobs(jobTypeList, jobInfoList):
jobs = []
jobCount = 0
for jobType in jobTypeList:
jobInfo = jobInfoList[jobType]
jobCount += 1
taskExecTime = randint(1, 50)
'''job = JobGenerator.genComputeIntensitveJob(str(jobCount), jobInfo["NumOfTasks"], jobInfo["Memory"], jobInfo["CPU"], jobInfo["Disk"], jobInfo["Network"],
jobInfo["TaskExecTime"], jobInfo["SubmitTime"])'''
job = JobGenerator.genComputeIntensitveJob(str(jobCount), jobInfo["NumOfTasks"], jobInfo["Memory"], jobInfo["CPU"], jobInfo["Disk"], jobInfo["Network"],
taskExecTime, jobInfo["SubmitTime"])
jobs.append(job)
return jobs
def calYARNJobTwoDComplementarity(jobs, nodeMemory, nodeCPU):
sumOfCom = 0
# vector complementarity
for jobA in jobs:
for jobB in jobs:
if jobA.getJobID() != jobB.getJobID():
jobARes = jobA.getResource()
jobBRes = jobB.getResource()
jobA2DResVec = [float(jobARes.getMemory()) / nodeMemory, float(jobARes.getCPU()) / nodeCPU]
jobB2DResVec = [float(jobBRes.getMemory()) / nodeMemory, float(jobBRes.getCPU()) / nodeCPU]
sumOfCom += Utility.calComplementarityOfTwoDVectors(jobA2DResVec, jobB2DResVec)
#avoid repeat computation
comple = sumOfCom / (2.0 * len(jobs))
# vector Symmetry
jobVectorList = []
for job in jobs:
jobVectorList.append([job.getResource().getMemory(), job.getResource().getCPU()])
symmetricity = Utility.calSymmetryOfTwoDVectors(jobVectorList)
return comple * symmetricity * symmetricity, comple, symmetricity
def loadJobInfo(fileName):
jobInfoList = []
f = open(fileName, "r")
lines = f.readlines()
for line in lines[1::]:
items = line.split(",")
jobInfoList.append({"NumOfTasks": int(items[0]),
"TaskExecTime": int(items[1]),
"SubmitTime": int(items[2]),
"Memory": int(items[3]),
"CPU": int(items[4]),
"Disk": int(items[5]),
"Network": int(items[6])})
f.close()
return jobInfoList
def compareMakespanAndFairness(finishedApps1, makespan1, finishedApps2, makespan2):
count = 0
reduction = 0.0
for k in finishedApps1.keys():
count += 1
finishTimeOfCurApp = finishedApps1[k]
finishTimeOfBaseApp = finishedApps2[k]
if finishTimeOfCurApp > finishTimeOfBaseApp:
reduction += float(finishTimeOfCurApp - finishTimeOfBaseApp) / finishTimeOfBaseApp
# the bigger the perf value is, the better performance the scheduler is
# the smaller the fairness value is , more fair the scheduler is,
return {"perf": 1 - float(makespan1) / makespan2, "fairness": float(reduction) / count}
# cal fairness by using the average reduction of job completion time
def calculateUnFairness(finishedApps, fairApps):
count = 0
reduction = 0.0
for k in finishedApps.keys():
count += 1
curExecTime = finishedApps[k]
fairExecTime = fairApps[k]
if curExecTime > fairExecTime:
red = float(curExecTime - fairExecTime) / fairExecTime
reduction += red
return float(reduction) / count
def calculateSlowdown(appFinishTime, bestAppFinishTime):
if appFinishTime <= bestAppFinishTime:
return 0.0
else:
return float(appFinishTime - bestAppFinishTime) / bestAppFinishTime
def schedule(clusterSize, queueName, jobList, policy, considerIO):
cluster = Cluster(clusterSize)
scheduler = YARNScheduler(cluster, considerIO)
#scheduler.createQueue("queue1", policy, True, "root")
scheduler.createQueue(queueName, policy, True, "root")
workloadGen = WorkloadGenerator(Configuration.SIMULATION_PATH, Configuration.WORKLOAD_PATH, {queueName: ""}, cluster)
workloadGen.genWorkloadByList(queueName, copy.deepcopy(jobList))
simulationStepCount = 0
while True:
if workloadGen.allJobsSubmitted() and len(scheduler.getAllApplications()) == 0:
break
currentTime = simulationStepCount * Configuration.SIMULATION_STEP
workloadGen.submitJobs(currentTime, scheduler)
scheduler.activateWaitingJobs(currentTime)
scheduler.oldSimulate(Configuration.SIMULATION_STEP, currentTime)
simulationStepCount += 1
makespan = simulationStepCount * Configuration.SIMULATION_STEP
finishedApp = scheduler.getFinishedAppsInfo()
return makespan, finishedApp
def execSimulation(clusterSize, queueName, jobList, policy):
makespan, finishedApp = schedule(clusterSize, queueName, jobList, policy)
return finishedApp, makespan
if __name__ == '__main__':
jobInfoList = loadJobInfo(Configuration.WORKLOAD_PATH + "YARNJobInfo")
v1 = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
v2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5]
'''vec = [v1, v2]
for v in vec:
jobs = genYARNJobs(v, jobInfoList)
comple = calYARNJobTwoDComplementarity(jobs, 20, 20)'''
'''vec = [0, 0]
jobs = genYARNJobs(vec, jobInfoList)
comple = calYARNJobTwoDComplementarity(jobs, 20, 20)
print(vec, comple)
print("***")'''
print("start")
output = open(Configuration.WORKLOAD_PATH + "fourSchedulersPerfFairDominantWorkload.txt", "w")
clusterSize = 10
numOfGroup = 10
numJobsPerGroupList = [12, 24, 48, 96]
# only consider dominant resource now, so there is only 4 types
#yarnJobTypes = [0, 1, 2, 3, 4, 5]
yarnJobTypes = [0, 1, 2, 3]
swapNumList = [20, 40, 60, 80, 100, 150, 200]
# job info list
#yarnJobsInfoList = ["YARNJobInfo1", "YARNJobInfo2"]
yarnJobsInfoList = ["DominantYARNJobInfo"]
for numJobs in numJobsPerGroupList:
for needSort in [True, False]:
for yarnJobsFile in yarnJobsInfoList:
#print("********* numJobs: " + str(numJobs) + ", needSort" + str(needSort) + ", yarnJobInfo" + yarnJobsFile + "*********")
output.write("********* numJobs: " + str(numJobs) + ", needSort" + str(needSort) + ", yarnJobInfo" + yarnJobsFile + "*********\n")
jobInfoList = loadJobInfo(Configuration.WORKLOAD_PATH + yarnJobsFile)
jobTypeList = genRandomJobTypeList(numJobs * numOfGroup, yarnJobTypes)
jobTypeList.sort()
windowBasedList = genWindowBasedList(jobTypeList, numJobs)
swappedWindowList = swapJobTypeListInterWindow(windowBasedList, swapNumList, needSort)
jobsToSchedule = []
for window in swappedWindowList:
jobs = genYARNJobs(window, jobInfoList)
# new metrics
'''finalComple, comple, symm = calYARNJobTwoDComplementarity(jobs, 20, 20)
output.write("[")
for win in window:
output.write("%s," % win)
output.write("],")
output.write("%.3f, %.3f, %.3f\n" % (finalComple, comple, symm))
jobsToSchedule.append({"Jobs": jobs, "FinalComple": finalComple, "Comple": comple, "Symm": symm})'''
# old metrics
#cal resource entropy for the workload
output.write("[")
for jobType in window:
output.write("%s," % str(jobType))
output.write("], ")
entropy = Utility.calEntropyOfApps(jobs)
output.write("entropy = %.3f\n", entropy)
jobsToSchedule.append({"Jobs": jobs, "Entropy": entropy})
output.write("start scheduling\n")
# new metrics
#output.write("FinalComple Comple Symm FIFOSlowdown FIFOUnfairness FairSlowdown FairUnfairness DRFSlowdown DRFUnfairness PerfSlowdown PerfUnfairness \n")
# old metrics
output.write("Entropy FIFOSlowdown FIFOUnfairness FairSlowdown FairUnfairness DRFSlowdown DRFUnfairness PerfSlowdown PerfUnfairness \n ")
for jobInfo in jobsToSchedule:
jobs = jobInfo["Jobs"]
resVector = []
for job in jobs:
resVector.append(job.getResourceVector())
makespanFIFO, finishedAppFIFO = schedule(clusterSize, "queue1", jobInfo["Jobs"], "FIFO", False)
makespanFair, finishedAppFair = schedule(clusterSize, "queue1", jobInfo["Jobs"], "fair", False)
makespanDRF, finishedAppDRF = schedule(clusterSize, "queue1", jobInfo["Jobs"], "MULTIFAIR", False)
makespanPerf, finishedAppPerf = schedule(clusterSize, "queue1", jobInfo["Jobs"], "MRF", False)
bestMakespan = min(makespanFIFO, makespanFair, makespanDRF, makespanPerf)
FIFOSlowdown = calculateSlowdown(makespanFIFO, bestMakespan)
FIFOUnfairness = calculateUnFairness(finishedAppFIFO, finishedAppDRF)
FairSlowdown = calculateSlowdown(makespanFair, bestMakespan)
FairUnfairness = calculateUnFairness(finishedAppFair, finishedAppDRF)
DRFSlowdown = calculateSlowdown(makespanDRF, bestMakespan)
DRFUnfairness = 0.0
PerfSlowdown = calculateSlowdown(makespanPerf, bestMakespan)
PerfUnfairness = calculateUnFairness(finishedAppPerf, finishedAppDRF)
# new metrics
'''output.write("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n" % (jobInfo["FinalComple"], jobInfo["Comple"], jobInfo["Symm"], \
FIFOSlowdown, FIFOUnfairness, FairSlowdown, FairUnfairness, \
DRFSlowdown, DRFUnfairness, PerfSlowdown, PerfUnfairness))'''
# old metrics
output.write("%.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f\n" % (jobInfo["Entropy"], \
FIFOSlowdown, FIFOUnfairness, FairSlowdown, FairUnfairness, \
DRFSlowdown, DRFUnfairness, PerfSlowdown, PerfUnfairness))
output.flush()
output.write("\n\n")
output.close()
print("end")