forked from neurosim/MLP_NeuroSim_V1.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Definition.h
111 lines (99 loc) · 4.87 KB
/
Definition.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*******************************************************************************
* Copyright (c) 2015-2017
* School of Electrical, Computer and Energy Engineering, Arizona State University
* PI: Prof. Shimeng Yu
* All rights reserved.
*
* This source code is part of NeuroSim - a device-circuit-algorithm framework to benchmark
* neuro-inspired architectures with synaptic devices(e.g., SRAM and emerging non-volatile memory).
* Copyright of the model is maintained by the developers, and the model is distributed under
* the terms of the Creative Commons Attribution-NonCommercial 4.0 International Public License
* http://creativecommons.org/licenses/by-nc/4.0/legalcode.
* The source code is free and you can redistribute and/or modify it
* by providing that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Developer list:
* Pai-Yu Chen Email: pchen72 at asu dot edu
*
* Xiaochen Peng Email: xpeng15 at asu dot edu
********************************************************************************/
// This file cannot be compiled alone. Only include this file in main.cpp.
/* Global variables */
Param *param = new Param(); // Parameter set
/* Inputs of training set */
std::vector< std::vector<double> >
Input(param->numMnistTrainImages, std::vector<double>(param->nInput));
/* Outputs of training set */
std::vector< std::vector<double> >
Output(param->numMnistTrainImages, std::vector<double>(param->nOutput));
/* Weights from input to hidden layer */
std::vector< std::vector<double> >
weight1(param->nHide, std::vector<double>(param->nInput));
/* Weights from hidden layer to output layer */
std::vector< std::vector<double> >
weight2(param->nOutput, std::vector<double>(param->nHide));
/* Weight change of weight1 */
std::vector< std::vector<double> >
deltaWeight1(param->nHide, std::vector<double>(param->nInput));
/* Weight change of weight2 */
std::vector< std::vector<double> >
deltaWeight2(param->nOutput, std::vector<double>(param->nHide));
/* Inputs of testing set */
std::vector< std::vector<double> >
testInput(param->numMnistTestImages, std::vector<double>(param->nInput));
/* Outputs of testing set */
std::vector< std::vector<double> >
testOutput(param->numMnistTestImages, std::vector<double>(param->nOutput));
/* Digitized inputs of training set (an integer between 0 to 2^numBitInput-1) */
std::vector< std::vector<int> >
dInput(param->numMnistTrainImages, std::vector<int>(param->nInput));
/* Digitized inputs of testing set (an integer between 0 to 2^numBitInput-1) */
std::vector< std::vector<int> >
dTestInput(param->numMnistTestImages, std::vector<int>(param->nInput));
/* # of correct prediction */
int correct = 0;
/* Synaptic array between input and hidden layer */
Array *arrayIH = new Array(param->nHide, param->nInput, param->arrayWireWidth);
/* Synaptic array between hidden and output layer */
Array *arrayHO = new Array(param->nOutput, param->nHide, param->arrayWireWidth);
/* Random number generator engine */
std::mt19937 gen;
/* NeuroSim */
SubArray *subArrayIH; // NeuroSim synaptic core for arrayIH
SubArray *subArrayHO; // NeuroSim synaptic core for arrayHO
/* Global properties of subArrayIH */
InputParameter inputParameterIH;
Technology techIH;
MemCell cellIH;
/* Global properties of subArrayHO */
InputParameter inputParameterHO;
Technology techHO;
MemCell cellHO;
/* Neuron peripheries below subArrayIH */
Adder adderIH(inputParameterIH, techIH, cellIH);
Mux muxIH(inputParameterIH, techIH, cellIH);
RowDecoder muxDecoderIH(inputParameterIH, techIH, cellIH);
DFF dffIH(inputParameterIH, techIH, cellIH);
/* Neuron peripheries below subArrayHO */
Adder adderHO(inputParameterHO, techHO, cellHO);
Mux muxHO(inputParameterHO, techHO, cellHO);
RowDecoder muxDecoderHO(inputParameterHO, techHO, cellHO);
DFF dffHO(inputParameterHO, techHO, cellHO);