diff --git a/L.Graticule.js b/L.Graticule.js new file mode 100644 index 0000000..c922214 --- /dev/null +++ b/L.Graticule.js @@ -0,0 +1,104 @@ +/* + Graticule plugin for Leaflet powered maps. +*/ +L.Graticule = L.GeoJSON.extend({ + + options: { + style: { + color: '#333', + weight: 1 + }, + interval: 20 + }, + + initialize: function (options) { + L.Util.setOptions(this, options); + this._layers = {}; + + if (this.options.sphere) { + this.addData(this._getFrame()); + } else { + this.addData(this._getGraticule()); + } + }, + + _getFrame: function() { + return { "type": "Polygon", + "coordinates": [ + this._getMeridian(-180).concat(this._getMeridian(180).reverse()) + ] + }; + }, + + _getGraticule: function () { + var features = [], interval = this.options.interval; + + // Meridians + for (var lng = 0; lng <= 180; lng = lng + interval) { + features.push(this._getFeature(this._getMeridian(lng), { + "name": (lng) ? lng.toString() + "° E" : "Prime meridian" + })); + if (lng !== 0) { + features.push(this._getFeature(this._getMeridian(-lng), { + "name": lng.toString() + "° W" + })); + } + } + + // Parallels + for (var lat = 0; lat < 90; lat = lat + interval) { + features.push(this._getFeature(this._getParallel(lat), { + "name": (lat) ? lat.toString() + "° N" : "Equator" + })); + if (lat !== 0) { + features.push(this._getFeature(this._getParallel(-lat), { + "name": lat.toString() + "° S" + })); + } + } + + return { + "type": "FeatureCollection", + "features": features + }; + }, + + _getMeridian: function (lng) { + lng = this._lngFix(lng); + var coords = []; + for (var lat = -90; lat <= 90; lat++) { + coords.push([lng, lat]); + } + return coords; + }, + + _getParallel: function (lat) { + var coords = []; + for (var lng = -180; lng <= 180; lng++) { + coords.push([this._lngFix(lng), lat]); + } + return coords; + }, + + _getFeature: function (coords, prop) { + return { + "type": "Feature", + "geometry": { + "type": "LineString", + "coordinates": coords + }, + "properties": prop + }; + }, + + _lngFix: function (lng) { + if (lng >= 180) return 179.999999; + if (lng <= -180) return -179.999999; + return lng; + } + +}); + +L.graticule = function (options) { + return new L.Graticule(options); +}; diff --git a/gts_SFC_jun_202202041400_area=NHEM_layer=MBCGTA_size=850_pnts=1_fontsize=1.00_zoomx=0000000_zoomy=0000000_border=0_wpf=1_amdar=0_colorwind=1_tmfc=2022020400_model=UM_cont=nwp_asia_SFC.png b/gts_SFC_jun_202202041400_area=NHEM_layer=MBCGTA_size=850_pnts=1_fontsize=1.00_zoomx=0000000_zoomy=0000000_border=0_wpf=1_amdar=0_colorwind=1_tmfc=2022020400_model=UM_cont=nwp_asia_SFC.png new file mode 100644 index 0000000..cf8a8ca Binary files /dev/null and b/gts_SFC_jun_202202041400_area=NHEM_layer=MBCGTA_size=850_pnts=1_fontsize=1.00_zoomx=0000000_zoomy=0000000_border=0_wpf=1_amdar=0_colorwind=1_tmfc=2022020400_model=UM_cont=nwp_asia_SFC.png differ diff --git a/gts_SFC_jun_202202041400_area=WORLD_layer=MGTA_size=1300_pnts=1_fontsize=1.00_zoomx=0000000_zoomy=0000000_border=0_wpf=1_amdar=0_colorwind=1_tmfc=2022020400_model=UM_cont=nwp_asia_SFC.png b/gts_SFC_jun_202202041400_area=WORLD_layer=MGTA_size=1300_pnts=1_fontsize=1.00_zoomx=0000000_zoomy=0000000_border=0_wpf=1_amdar=0_colorwind=1_tmfc=2022020400_model=UM_cont=nwp_asia_SFC.png new file mode 100644 index 0000000..cec05aa Binary files /dev/null and b/gts_SFC_jun_202202041400_area=WORLD_layer=MGTA_size=1300_pnts=1_fontsize=1.00_zoomx=0000000_zoomy=0000000_border=0_wpf=1_amdar=0_colorwind=1_tmfc=2022020400_model=UM_cont=nwp_asia_SFC.png differ diff --git a/leaflet_imgoverlay.html b/leaflet_imgoverlay.html new file mode 100644 index 0000000..c5842d5 --- /dev/null +++ b/leaflet_imgoverlay.html @@ -0,0 +1,467 @@ + + + + + + + + + + + + + + +
+ + + + + + \ No newline at end of file diff --git a/leaflet_imgoverlay_nhem.html b/leaflet_imgoverlay_nhem.html new file mode 100644 index 0000000..af9931a --- /dev/null +++ b/leaflet_imgoverlay_nhem.html @@ -0,0 +1,419 @@ + + + + + + + + + + + + + + +
+ + + + + + \ No newline at end of file diff --git a/leaflet_imgoverlay_world.html b/leaflet_imgoverlay_world.html new file mode 100644 index 0000000..d9d8125 --- /dev/null +++ b/leaflet_imgoverlay_world.html @@ -0,0 +1,455 @@ + + + + + + + + + + + + + + +
+ + + + + + \ No newline at end of file diff --git a/proj4.js b/proj4.js new file mode 100644 index 0000000..0fdb880 --- /dev/null +++ b/proj4.js @@ -0,0 +1,5485 @@ +!function(e){if("object"==typeof exports)module.exports=e();else if("function"==typeof define&&define.amd)define(e);else{var f;"undefined"!=typeof window?f=window:"undefined"!=typeof global?f=global:"undefined"!=typeof self&&(f=self),f.proj4=e()}}(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o 1) { + x = (x > 1) ? 1 : -1; + } + return Math.asin(x); +}; +},{}],7:[function(_dereq_,module,exports){ +module.exports = function(x) { + return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x))); +}; +},{}],8:[function(_dereq_,module,exports){ +module.exports = function(x) { + return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x))); +}; +},{}],9:[function(_dereq_,module,exports){ +module.exports = function(x) { + return (0.05859375 * x * x * (1 + 0.75 * x)); +}; +},{}],10:[function(_dereq_,module,exports){ +module.exports = function(x) { + return (x * x * x * (35 / 3072)); +}; +},{}],11:[function(_dereq_,module,exports){ +module.exports = function(a, e, sinphi) { + var temp = e * sinphi; + return a / Math.sqrt(1 - temp * temp); +}; +},{}],12:[function(_dereq_,module,exports){ +module.exports = function(ml, e0, e1, e2, e3) { + var phi; + var dphi; + + phi = ml / e0; + for (var i = 0; i < 15; i++) { + dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi)); + phi += dphi; + if (Math.abs(dphi) <= 0.0000000001) { + return phi; + } + } + + //..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations"); + return NaN; +}; +},{}],13:[function(_dereq_,module,exports){ +var HALF_PI = Math.PI/2; + +module.exports = function(eccent, q) { + var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent)); + if (Math.abs(Math.abs(q) - temp) < 1.0E-6) { + if (q < 0) { + return (-1 * HALF_PI); + } + else { + return HALF_PI; + } + } + //var phi = 0.5* q/(1-eccent*eccent); + var phi = Math.asin(0.5 * q); + var dphi; + var sin_phi; + var cos_phi; + var con; + for (var i = 0; i < 30; i++) { + sin_phi = Math.sin(phi); + cos_phi = Math.cos(phi); + con = eccent * sin_phi; + dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con))); + phi += dphi; + if (Math.abs(dphi) <= 0.0000000001) { + return phi; + } + } + + //console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations"); + return NaN; +}; +},{}],14:[function(_dereq_,module,exports){ +module.exports = function(e0, e1, e2, e3, phi) { + return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi)); +}; +},{}],15:[function(_dereq_,module,exports){ +module.exports = function(eccent, sinphi, cosphi) { + var con = eccent * sinphi; + return cosphi / (Math.sqrt(1 - con * con)); +}; +},{}],16:[function(_dereq_,module,exports){ +var HALF_PI = Math.PI/2; +module.exports = function(eccent, ts) { + var eccnth = 0.5 * eccent; + var con, dphi; + var phi = HALF_PI - 2 * Math.atan(ts); + for (var i = 0; i <= 15; i++) { + con = eccent * Math.sin(phi); + dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi; + phi += dphi; + if (Math.abs(dphi) <= 0.0000000001) { + return phi; + } + } + //console.log("phi2z has NoConvergence"); + return -9999; +}; +},{}],17:[function(_dereq_,module,exports){ +var C00 = 1; +var C02 = 0.25; +var C04 = 0.046875; +var C06 = 0.01953125; +var C08 = 0.01068115234375; +var C22 = 0.75; +var C44 = 0.46875; +var C46 = 0.01302083333333333333; +var C48 = 0.00712076822916666666; +var C66 = 0.36458333333333333333; +var C68 = 0.00569661458333333333; +var C88 = 0.3076171875; + +module.exports = function(es) { + var en = []; + en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08))); + en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08))); + var t = es * es; + en[2] = t * (C44 - es * (C46 + es * C48)); + t *= es; + en[3] = t * (C66 - es * C68); + en[4] = t * es * C88; + return en; +}; +},{}],18:[function(_dereq_,module,exports){ +var pj_mlfn = _dereq_("./pj_mlfn"); +var EPSLN = 1.0e-10; +var MAX_ITER = 20; +module.exports = function(arg, es, en) { + var k = 1 / (1 - es); + var phi = arg; + for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */ + var s = Math.sin(phi); + var t = 1 - es * s * s; + //t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg; + //phi -= t * (t * Math.sqrt(t)) * k; + t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k; + phi -= t; + if (Math.abs(t) < EPSLN) { + return phi; + } + } + //..reportError("cass:pj_inv_mlfn: Convergence error"); + return phi; +}; +},{"./pj_mlfn":19}],19:[function(_dereq_,module,exports){ +module.exports = function(phi, sphi, cphi, en) { + cphi *= sphi; + sphi *= sphi; + return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4])))); +}; +},{}],20:[function(_dereq_,module,exports){ +module.exports = function(eccent, sinphi) { + var con; + if (eccent > 1.0e-7) { + con = eccent * sinphi; + return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con)))); + } + else { + return (2 * sinphi); + } +}; +},{}],21:[function(_dereq_,module,exports){ +module.exports = function(x) { + return x<0 ? -1 : 1; +}; +},{}],22:[function(_dereq_,module,exports){ +module.exports = function(esinp, exp) { + return (Math.pow((1 - esinp) / (1 + esinp), exp)); +}; +},{}],23:[function(_dereq_,module,exports){ +module.exports = function (array){ + var out = { + x: array[0], + y: array[1] + }; + if (array.length>2) { + out.z = array[2]; + } + if (array.length>3) { + out.m = array[3]; + } + return out; +}; +},{}],24:[function(_dereq_,module,exports){ +var HALF_PI = Math.PI/2; + +module.exports = function(eccent, phi, sinphi) { + var con = eccent * sinphi; + var com = 0.5 * eccent; + con = Math.pow(((1 - con) / (1 + con)), com); + return (Math.tan(0.5 * (HALF_PI - phi)) / con); +}; +},{}],25:[function(_dereq_,module,exports){ +exports.wgs84 = { + towgs84: "0,0,0", + ellipse: "WGS84", + datumName: "WGS84" +}; +exports.ch1903 = { + towgs84: "674.374,15.056,405.346", + ellipse: "bessel", + datumName: "swiss" +}; +exports.ggrs87 = { + towgs84: "-199.87,74.79,246.62", + ellipse: "GRS80", + datumName: "Greek_Geodetic_Reference_System_1987" +}; +exports.nad83 = { + towgs84: "0,0,0", + ellipse: "GRS80", + datumName: "North_American_Datum_1983" +}; +exports.nad27 = { + nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat", + ellipse: "clrk66", + datumName: "North_American_Datum_1927" +}; +exports.potsdam = { + towgs84: "606.0,23.0,413.0", + ellipse: "bessel", + datumName: "Potsdam Rauenberg 1950 DHDN" +}; +exports.carthage = { + towgs84: "-263.0,6.0,431.0", + ellipse: "clark80", + datumName: "Carthage 1934 Tunisia" +}; +exports.hermannskogel = { + towgs84: "653.0,-212.0,449.0", + ellipse: "bessel", + datumName: "Hermannskogel" +}; +exports.ire65 = { + towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15", + ellipse: "mod_airy", + datumName: "Ireland 1965" +}; +exports.rassadiran = { + towgs84: "-133.63,-157.5,-158.62", + ellipse: "intl", + datumName: "Rassadiran" +}; +exports.nzgd49 = { + towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993", + ellipse: "intl", + datumName: "New Zealand Geodetic Datum 1949" +}; +exports.osgb36 = { + towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894", + ellipse: "airy", + datumName: "Airy 1830" +}; +exports.s_jtsk = { + towgs84: "589,76,480", + ellipse: 'bessel', + datumName: 'S-JTSK (Ferro)' +}; +exports.beduaram = { + towgs84: '-106,-87,188', + ellipse: 'clrk80', + datumName: 'Beduaram' +}; +exports.gunung_segara = { + towgs84: '-403,684,41', + ellipse: 'bessel', + datumName: 'Gunung Segara Jakarta' +}; +exports.rnb72 = { + towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1", + ellipse: "intl", + datumName: "Reseau National Belge 1972" +}; +},{}],26:[function(_dereq_,module,exports){ +exports.MERIT = { + a: 6378137.0, + rf: 298.257, + ellipseName: "MERIT 1983" +}; +exports.SGS85 = { + a: 6378136.0, + rf: 298.257, + ellipseName: "Soviet Geodetic System 85" +}; +exports.GRS80 = { + a: 6378137.0, + rf: 298.257222101, + ellipseName: "GRS 1980(IUGG, 1980)" +}; +exports.IAU76 = { + a: 6378140.0, + rf: 298.257, + ellipseName: "IAU 1976" +}; +exports.airy = { + a: 6377563.396, + b: 6356256.910, + ellipseName: "Airy 1830" +}; +exports.APL4 = { + a: 6378137, + rf: 298.25, + ellipseName: "Appl. Physics. 1965" +}; +exports.NWL9D = { + a: 6378145.0, + rf: 298.25, + ellipseName: "Naval Weapons Lab., 1965" +}; +exports.mod_airy = { + a: 6377340.189, + b: 6356034.446, + ellipseName: "Modified Airy" +}; +exports.andrae = { + a: 6377104.43, + rf: 300.0, + ellipseName: "Andrae 1876 (Den., Iclnd.)" +}; +exports.aust_SA = { + a: 6378160.0, + rf: 298.25, + ellipseName: "Australian Natl & S. Amer. 1969" +}; +exports.GRS67 = { + a: 6378160.0, + rf: 298.2471674270, + ellipseName: "GRS 67(IUGG 1967)" +}; +exports.bessel = { + a: 6377397.155, + rf: 299.1528128, + ellipseName: "Bessel 1841" +}; +exports.bess_nam = { + a: 6377483.865, + rf: 299.1528128, + ellipseName: "Bessel 1841 (Namibia)" +}; +exports.clrk66 = { + a: 6378206.4, + b: 6356583.8, + ellipseName: "Clarke 1866" +}; +exports.clrk80 = { + a: 6378249.145, + rf: 293.4663, + ellipseName: "Clarke 1880 mod." +}; +exports.clrk58 = { + a: 6378293.645208759, + rf: 294.2606763692654, + ellipseName: "Clarke 1858" +}; +exports.CPM = { + a: 6375738.7, + rf: 334.29, + ellipseName: "Comm. des Poids et Mesures 1799" +}; +exports.delmbr = { + a: 6376428.0, + rf: 311.5, + ellipseName: "Delambre 1810 (Belgium)" +}; +exports.engelis = { + a: 6378136.05, + rf: 298.2566, + ellipseName: "Engelis 1985" +}; +exports.evrst30 = { + a: 6377276.345, + rf: 300.8017, + ellipseName: "Everest 1830" +}; +exports.evrst48 = { + a: 6377304.063, + rf: 300.8017, + ellipseName: "Everest 1948" +}; +exports.evrst56 = { + a: 6377301.243, + rf: 300.8017, + ellipseName: "Everest 1956" +}; +exports.evrst69 = { + a: 6377295.664, + rf: 300.8017, + ellipseName: "Everest 1969" +}; +exports.evrstSS = { + a: 6377298.556, + rf: 300.8017, + ellipseName: "Everest (Sabah & Sarawak)" +}; +exports.fschr60 = { + a: 6378166.0, + rf: 298.3, + ellipseName: "Fischer (Mercury Datum) 1960" +}; +exports.fschr60m = { + a: 6378155.0, + rf: 298.3, + ellipseName: "Fischer 1960" +}; +exports.fschr68 = { + a: 6378150.0, + rf: 298.3, + ellipseName: "Fischer 1968" +}; +exports.helmert = { + a: 6378200.0, + rf: 298.3, + ellipseName: "Helmert 1906" +}; +exports.hough = { + a: 6378270.0, + rf: 297.0, + ellipseName: "Hough" +}; +exports.intl = { + a: 6378388.0, + rf: 297.0, + ellipseName: "International 1909 (Hayford)" +}; +exports.kaula = { + a: 6378163.0, + rf: 298.24, + ellipseName: "Kaula 1961" +}; +exports.lerch = { + a: 6378139.0, + rf: 298.257, + ellipseName: "Lerch 1979" +}; +exports.mprts = { + a: 6397300.0, + rf: 191.0, + ellipseName: "Maupertius 1738" +}; +exports.new_intl = { + a: 6378157.5, + b: 6356772.2, + ellipseName: "New International 1967" +}; +exports.plessis = { + a: 6376523.0, + rf: 6355863.0, + ellipseName: "Plessis 1817 (France)" +}; +exports.krass = { + a: 6378245.0, + rf: 298.3, + ellipseName: "Krassovsky, 1942" +}; +exports.SEasia = { + a: 6378155.0, + b: 6356773.3205, + ellipseName: "Southeast Asia" +}; +exports.walbeck = { + a: 6376896.0, + b: 6355834.8467, + ellipseName: "Walbeck" +}; +exports.WGS60 = { + a: 6378165.0, + rf: 298.3, + ellipseName: "WGS 60" +}; +exports.WGS66 = { + a: 6378145.0, + rf: 298.25, + ellipseName: "WGS 66" +}; +exports.WGS7 = { + a: 6378135.0, + rf: 298.26, + ellipseName: "WGS 72" +}; +exports.WGS84 = { + a: 6378137.0, + rf: 298.257223563, + ellipseName: "WGS 84" +}; +exports.sphere = { + a: 6370997.0, + b: 6370997.0, + ellipseName: "Normal Sphere (r=6370997)" +}; +},{}],27:[function(_dereq_,module,exports){ +exports.greenwich = 0.0; //"0dE", +exports.lisbon = -9.131906111111; //"9d07'54.862\"W", +exports.paris = 2.337229166667; //"2d20'14.025\"E", +exports.bogota = -74.080916666667; //"74d04'51.3\"W", +exports.madrid = -3.687938888889; //"3d41'16.58\"W", +exports.rome = 12.452333333333; //"12d27'8.4\"E", +exports.bern = 7.439583333333; //"7d26'22.5\"E", +exports.jakarta = 106.807719444444; //"106d48'27.79\"E", +exports.ferro = -17.666666666667; //"17d40'W", +exports.brussels = 4.367975; //"4d22'4.71\"E", +exports.stockholm = 18.058277777778; //"18d3'29.8\"E", +exports.athens = 23.7163375; //"23d42'58.815\"E", +exports.oslo = 10.722916666667; //"10d43'22.5\"E" +},{}],28:[function(_dereq_,module,exports){ +exports.ft = {to_meter: 0.3048}; +exports['us-ft'] = {to_meter: 1200 / 3937}; + +},{}],29:[function(_dereq_,module,exports){ +var proj = _dereq_('./Proj'); +var transform = _dereq_('./transform'); +var wgs84 = proj('WGS84'); + +function transformer(from, to, coords) { + var transformedArray; + if (Array.isArray(coords)) { + transformedArray = transform(from, to, coords); + if (coords.length === 3) { + return [transformedArray.x, transformedArray.y, transformedArray.z]; + } + else { + return [transformedArray.x, transformedArray.y]; + } + } + else { + return transform(from, to, coords); + } +} + +function checkProj(item) { + if (item instanceof proj) { + return item; + } + if (item.oProj) { + return item.oProj; + } + return proj(item); +} +function proj4(fromProj, toProj, coord) { + fromProj = checkProj(fromProj); + var single = false; + var obj; + if (typeof toProj === 'undefined') { + toProj = fromProj; + fromProj = wgs84; + single = true; + } + else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) { + coord = toProj; + toProj = fromProj; + fromProj = wgs84; + single = true; + } + toProj = checkProj(toProj); + if (coord) { + return transformer(fromProj, toProj, coord); + } + else { + obj = { + forward: function(coords) { + return transformer(fromProj, toProj, coords); + }, + inverse: function(coords) { + return transformer(toProj, fromProj, coords); + } + }; + if (single) { + obj.oProj = toProj; + } + return obj; + } +} +module.exports = proj4; +},{"./Proj":2,"./transform":65}],30:[function(_dereq_,module,exports){ +var HALF_PI = Math.PI/2; +var PJD_3PARAM = 1; +var PJD_7PARAM = 2; +var PJD_GRIDSHIFT = 3; +var PJD_WGS84 = 4; // WGS84 or equivalent +var PJD_NODATUM = 5; // WGS84 or equivalent +var SEC_TO_RAD = 4.84813681109535993589914102357e-6; +var AD_C = 1.0026000; +var COS_67P5 = 0.38268343236508977; +var datum = function(proj) { + if (!(this instanceof datum)) { + return new datum(proj); + } + this.datum_type = PJD_WGS84; //default setting + if (!proj) { + return; + } + if (proj.datumCode && proj.datumCode === 'none') { + this.datum_type = PJD_NODATUM; + } + + if (proj.datum_params) { + this.datum_params = proj.datum_params.map(parseFloat); + if (this.datum_params[0] !== 0 || this.datum_params[1] !== 0 || this.datum_params[2] !== 0) { + this.datum_type = PJD_3PARAM; + } + if (this.datum_params.length > 3) { + if (this.datum_params[3] !== 0 || this.datum_params[4] !== 0 || this.datum_params[5] !== 0 || this.datum_params[6] !== 0) { + this.datum_type = PJD_7PARAM; + this.datum_params[3] *= SEC_TO_RAD; + this.datum_params[4] *= SEC_TO_RAD; + this.datum_params[5] *= SEC_TO_RAD; + this.datum_params[6] = (this.datum_params[6] / 1000000.0) + 1.0; + } + } + } + + // DGR 2011-03-21 : nadgrids support + this.datum_type = proj.grids ? PJD_GRIDSHIFT : this.datum_type; + + this.a = proj.a; //datum object also uses these values + this.b = proj.b; + this.es = proj.es; + this.ep2 = proj.ep2; + if (this.datum_type === PJD_GRIDSHIFT) { + this.grids = proj.grids; + } +}; +datum.prototype = { + + + /****************************************************************/ + // cs_compare_datums() + // Returns TRUE if the two datums match, otherwise FALSE. + compare_datums: function(dest) { + if (this.datum_type !== dest.datum_type) { + return false; // false, datums are not equal + } + else if (this.a !== dest.a || Math.abs(this.es - dest.es) > 0.000000000050) { + // the tolerence for es is to ensure that GRS80 and WGS84 + // are considered identical + return false; + } + else if (this.datum_type === PJD_3PARAM) { + return (this.datum_params[0] === dest.datum_params[0] && this.datum_params[1] === dest.datum_params[1] && this.datum_params[2] === dest.datum_params[2]); + } + else if (this.datum_type === PJD_7PARAM) { + return (this.datum_params[0] === dest.datum_params[0] && this.datum_params[1] === dest.datum_params[1] && this.datum_params[2] === dest.datum_params[2] && this.datum_params[3] === dest.datum_params[3] && this.datum_params[4] === dest.datum_params[4] && this.datum_params[5] === dest.datum_params[5] && this.datum_params[6] === dest.datum_params[6]); + } + else if (this.datum_type === PJD_GRIDSHIFT || dest.datum_type === PJD_GRIDSHIFT) { + //alert("ERROR: Grid shift transformations are not implemented."); + //return false + //DGR 2012-07-29 lazy ... + return this.nadgrids === dest.nadgrids; + } + else { + return true; // datums are equal + } + }, // cs_compare_datums() + + /* + * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates + * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z), + * according to the current ellipsoid parameters. + * + * Latitude : Geodetic latitude in radians (input) + * Longitude : Geodetic longitude in radians (input) + * Height : Geodetic height, in meters (input) + * X : Calculated Geocentric X coordinate, in meters (output) + * Y : Calculated Geocentric Y coordinate, in meters (output) + * Z : Calculated Geocentric Z coordinate, in meters (output) + * + */ + geodetic_to_geocentric: function(p) { + var Longitude = p.x; + var Latitude = p.y; + var Height = p.z ? p.z : 0; //Z value not always supplied + var X; // output + var Y; + var Z; + + var Error_Code = 0; // GEOCENT_NO_ERROR; + var Rn; /* Earth radius at location */ + var Sin_Lat; /* Math.sin(Latitude) */ + var Sin2_Lat; /* Square of Math.sin(Latitude) */ + var Cos_Lat; /* Math.cos(Latitude) */ + + /* + ** Don't blow up if Latitude is just a little out of the value + ** range as it may just be a rounding issue. Also removed longitude + ** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001. + */ + if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) { + Latitude = -HALF_PI; + } + else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) { + Latitude = HALF_PI; + } + else if ((Latitude < -HALF_PI) || (Latitude > HALF_PI)) { + /* Latitude out of range */ + //..reportError('geocent:lat out of range:' + Latitude); + return null; + } + + if (Longitude > Math.PI) { + Longitude -= (2 * Math.PI); + } + Sin_Lat = Math.sin(Latitude); + Cos_Lat = Math.cos(Latitude); + Sin2_Lat = Sin_Lat * Sin_Lat; + Rn = this.a / (Math.sqrt(1.0e0 - this.es * Sin2_Lat)); + X = (Rn + Height) * Cos_Lat * Math.cos(Longitude); + Y = (Rn + Height) * Cos_Lat * Math.sin(Longitude); + Z = ((Rn * (1 - this.es)) + Height) * Sin_Lat; + + p.x = X; + p.y = Y; + p.z = Z; + return Error_Code; + }, // cs_geodetic_to_geocentric() + + + geocentric_to_geodetic: function(p) { + /* local defintions and variables */ + /* end-criterium of loop, accuracy of sin(Latitude) */ + var genau = 1e-12; + var genau2 = (genau * genau); + var maxiter = 30; + + var P; /* distance between semi-minor axis and location */ + var RR; /* distance between center and location */ + var CT; /* sin of geocentric latitude */ + var ST; /* cos of geocentric latitude */ + var RX; + var RK; + var RN; /* Earth radius at location */ + var CPHI0; /* cos of start or old geodetic latitude in iterations */ + var SPHI0; /* sin of start or old geodetic latitude in iterations */ + var CPHI; /* cos of searched geodetic latitude */ + var SPHI; /* sin of searched geodetic latitude */ + var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */ + var At_Pole; /* indicates location is in polar region */ + var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */ + + var X = p.x; + var Y = p.y; + var Z = p.z ? p.z : 0.0; //Z value not always supplied + var Longitude; + var Latitude; + var Height; + + At_Pole = false; + P = Math.sqrt(X * X + Y * Y); + RR = Math.sqrt(X * X + Y * Y + Z * Z); + + /* special cases for latitude and longitude */ + if (P / this.a < genau) { + + /* special case, if P=0. (X=0., Y=0.) */ + At_Pole = true; + Longitude = 0.0; + + /* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis + * of ellipsoid (=center of mass), Latitude becomes PI/2 */ + if (RR / this.a < genau) { + Latitude = HALF_PI; + Height = -this.b; + return; + } + } + else { + /* ellipsoidal (geodetic) longitude + * interval: -PI < Longitude <= +PI */ + Longitude = Math.atan2(Y, X); + } + + /* -------------------------------------------------------------- + * Following iterative algorithm was developped by + * "Institut for Erdmessung", University of Hannover, July 1988. + * Internet: www.ife.uni-hannover.de + * Iterative computation of CPHI,SPHI and Height. + * Iteration of CPHI and SPHI to 10**-12 radian resp. + * 2*10**-7 arcsec. + * -------------------------------------------------------------- + */ + CT = Z / RR; + ST = P / RR; + RX = 1.0 / Math.sqrt(1.0 - this.es * (2.0 - this.es) * ST * ST); + CPHI0 = ST * (1.0 - this.es) * RX; + SPHI0 = CT * RX; + iter = 0; + + /* loop to find sin(Latitude) resp. Latitude + * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */ + do { + iter++; + RN = this.a / Math.sqrt(1.0 - this.es * SPHI0 * SPHI0); + + /* ellipsoidal (geodetic) height */ + Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - this.es * SPHI0 * SPHI0); + + RK = this.es * RN / (RN + Height); + RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST); + CPHI = ST * (1.0 - RK) * RX; + SPHI = CT * RX; + SDPHI = SPHI * CPHI0 - CPHI * SPHI0; + CPHI0 = CPHI; + SPHI0 = SPHI; + } + while (SDPHI * SDPHI > genau2 && iter < maxiter); + + /* ellipsoidal (geodetic) latitude */ + Latitude = Math.atan(SPHI / Math.abs(CPHI)); + + p.x = Longitude; + p.y = Latitude; + p.z = Height; + return p; + }, // cs_geocentric_to_geodetic() + + /** Convert_Geocentric_To_Geodetic + * The method used here is derived from 'An Improved Algorithm for + * Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996 + */ + geocentric_to_geodetic_noniter: function(p) { + var X = p.x; + var Y = p.y; + var Z = p.z ? p.z : 0; //Z value not always supplied + var Longitude; + var Latitude; + var Height; + + var W; /* distance from Z axis */ + var W2; /* square of distance from Z axis */ + var T0; /* initial estimate of vertical component */ + var T1; /* corrected estimate of vertical component */ + var S0; /* initial estimate of horizontal component */ + var S1; /* corrected estimate of horizontal component */ + var Sin_B0; /* Math.sin(B0), B0 is estimate of Bowring aux variable */ + var Sin3_B0; /* cube of Math.sin(B0) */ + var Cos_B0; /* Math.cos(B0) */ + var Sin_p1; /* Math.sin(phi1), phi1 is estimated latitude */ + var Cos_p1; /* Math.cos(phi1) */ + var Rn; /* Earth radius at location */ + var Sum; /* numerator of Math.cos(phi1) */ + var At_Pole; /* indicates location is in polar region */ + + X = parseFloat(X); // cast from string to float + Y = parseFloat(Y); + Z = parseFloat(Z); + + At_Pole = false; + if (X !== 0.0) { + Longitude = Math.atan2(Y, X); + } + else { + if (Y > 0) { + Longitude = HALF_PI; + } + else if (Y < 0) { + Longitude = -HALF_PI; + } + else { + At_Pole = true; + Longitude = 0.0; + if (Z > 0.0) { /* north pole */ + Latitude = HALF_PI; + } + else if (Z < 0.0) { /* south pole */ + Latitude = -HALF_PI; + } + else { /* center of earth */ + Latitude = HALF_PI; + Height = -this.b; + return; + } + } + } + W2 = X * X + Y * Y; + W = Math.sqrt(W2); + T0 = Z * AD_C; + S0 = Math.sqrt(T0 * T0 + W2); + Sin_B0 = T0 / S0; + Cos_B0 = W / S0; + Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0; + T1 = Z + this.b * this.ep2 * Sin3_B0; + Sum = W - this.a * this.es * Cos_B0 * Cos_B0 * Cos_B0; + S1 = Math.sqrt(T1 * T1 + Sum * Sum); + Sin_p1 = T1 / S1; + Cos_p1 = Sum / S1; + Rn = this.a / Math.sqrt(1.0 - this.es * Sin_p1 * Sin_p1); + if (Cos_p1 >= COS_67P5) { + Height = W / Cos_p1 - Rn; + } + else if (Cos_p1 <= -COS_67P5) { + Height = W / -Cos_p1 - Rn; + } + else { + Height = Z / Sin_p1 + Rn * (this.es - 1.0); + } + if (At_Pole === false) { + Latitude = Math.atan(Sin_p1 / Cos_p1); + } + + p.x = Longitude; + p.y = Latitude; + p.z = Height; + return p; + }, // geocentric_to_geodetic_noniter() + + /****************************************************************/ + // pj_geocentic_to_wgs84( p ) + // p = point to transform in geocentric coordinates (x,y,z) + geocentric_to_wgs84: function(p) { + + if (this.datum_type === PJD_3PARAM) { + // if( x[io] === HUGE_VAL ) + // continue; + p.x += this.datum_params[0]; + p.y += this.datum_params[1]; + p.z += this.datum_params[2]; + + } + else if (this.datum_type === PJD_7PARAM) { + var Dx_BF = this.datum_params[0]; + var Dy_BF = this.datum_params[1]; + var Dz_BF = this.datum_params[2]; + var Rx_BF = this.datum_params[3]; + var Ry_BF = this.datum_params[4]; + var Rz_BF = this.datum_params[5]; + var M_BF = this.datum_params[6]; + // if( x[io] === HUGE_VAL ) + // continue; + var x_out = M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF; + var y_out = M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF; + var z_out = M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF; + p.x = x_out; + p.y = y_out; + p.z = z_out; + } + }, // cs_geocentric_to_wgs84 + + /****************************************************************/ + // pj_geocentic_from_wgs84() + // coordinate system definition, + // point to transform in geocentric coordinates (x,y,z) + geocentric_from_wgs84: function(p) { + + if (this.datum_type === PJD_3PARAM) { + //if( x[io] === HUGE_VAL ) + // continue; + p.x -= this.datum_params[0]; + p.y -= this.datum_params[1]; + p.z -= this.datum_params[2]; + + } + else if (this.datum_type === PJD_7PARAM) { + var Dx_BF = this.datum_params[0]; + var Dy_BF = this.datum_params[1]; + var Dz_BF = this.datum_params[2]; + var Rx_BF = this.datum_params[3]; + var Ry_BF = this.datum_params[4]; + var Rz_BF = this.datum_params[5]; + var M_BF = this.datum_params[6]; + var x_tmp = (p.x - Dx_BF) / M_BF; + var y_tmp = (p.y - Dy_BF) / M_BF; + var z_tmp = (p.z - Dz_BF) / M_BF; + //if( x[io] === HUGE_VAL ) + // continue; + + p.x = x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp; + p.y = -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp; + p.z = Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp; + } //cs_geocentric_from_wgs84() + } +}; + +/** point object, nothing fancy, just allows values to be + passed back and forth by reference rather than by value. + Other point classes may be used as long as they have + x and y properties, which will get modified in the transform method. +*/ +module.exports = datum; + +},{}],31:[function(_dereq_,module,exports){ +var PJD_3PARAM = 1; +var PJD_7PARAM = 2; +var PJD_GRIDSHIFT = 3; +var PJD_NODATUM = 5; // WGS84 or equivalent +var SRS_WGS84_SEMIMAJOR = 6378137; // only used in grid shift transforms +var SRS_WGS84_ESQUARED = 0.006694379990141316; //DGR: 2012-07-29 +module.exports = function(source, dest, point) { + var wp, i, l; + + function checkParams(fallback) { + return (fallback === PJD_3PARAM || fallback === PJD_7PARAM); + } + // Short cut if the datums are identical. + if (source.compare_datums(dest)) { + return point; // in this case, zero is sucess, + // whereas cs_compare_datums returns 1 to indicate TRUE + // confusing, should fix this + } + + // Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest + if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) { + return point; + } + + //DGR: 2012-07-29 : add nadgrids support (begin) + var src_a = source.a; + var src_es = source.es; + + var dst_a = dest.a; + var dst_es = dest.es; + + var fallback = source.datum_type; + // If this datum requires grid shifts, then apply it to geodetic coordinates. + if (fallback === PJD_GRIDSHIFT) { + if (this.apply_gridshift(source, 0, point) === 0) { + source.a = SRS_WGS84_SEMIMAJOR; + source.es = SRS_WGS84_ESQUARED; + } + else { + // try 3 or 7 params transformation or nothing ? + if (!source.datum_params) { + source.a = src_a; + source.es = source.es; + return point; + } + wp = 1; + for (i = 0, l = source.datum_params.length; i < l; i++) { + wp *= source.datum_params[i]; + } + if (wp === 0) { + source.a = src_a; + source.es = source.es; + return point; + } + if (source.datum_params.length > 3) { + fallback = PJD_7PARAM; + } + else { + fallback = PJD_3PARAM; + } + } + } + if (dest.datum_type === PJD_GRIDSHIFT) { + dest.a = SRS_WGS84_SEMIMAJOR; + dest.es = SRS_WGS84_ESQUARED; + } + // Do we need to go through geocentric coordinates? + if (source.es !== dest.es || source.a !== dest.a || checkParams(fallback) || checkParams(dest.datum_type)) { + //DGR: 2012-07-29 : add nadgrids support (end) + // Convert to geocentric coordinates. + source.geodetic_to_geocentric(point); + // CHECK_RETURN; + // Convert between datums + if (checkParams(source.datum_type)) { + source.geocentric_to_wgs84(point); + // CHECK_RETURN; + } + if (checkParams(dest.datum_type)) { + dest.geocentric_from_wgs84(point); + // CHECK_RETURN; + } + // Convert back to geodetic coordinates + dest.geocentric_to_geodetic(point); + // CHECK_RETURN; + } + // Apply grid shift to destination if required + if (dest.datum_type === PJD_GRIDSHIFT) { + this.apply_gridshift(dest, 1, point); + // CHECK_RETURN; + } + + source.a = src_a; + source.es = src_es; + dest.a = dst_a; + dest.es = dst_es; + + return point; +}; + + +},{}],32:[function(_dereq_,module,exports){ +var globals = _dereq_('./global'); +var parseProj = _dereq_('./projString'); +var wkt = _dereq_('./wkt'); + +function defs(name) { + /*global console*/ + var that = this; + if (arguments.length === 2) { + var def = arguments[1]; + if (typeof def === 'string') { + if (def.charAt(0) === '+') { + defs[name] = parseProj(arguments[1]); + } + else { + defs[name] = wkt(arguments[1]); + } + } else { + defs[name] = def; + } + } + else if (arguments.length === 1) { + if (Array.isArray(name)) { + return name.map(function(v) { + if (Array.isArray(v)) { + defs.apply(that, v); + } + else { + defs(v); + } + }); + } + else if (typeof name === 'string') { + if (name in defs) { + return defs[name]; + } + } + else if ('EPSG' in name) { + defs['EPSG:' + name.EPSG] = name; + } + else if ('ESRI' in name) { + defs['ESRI:' + name.ESRI] = name; + } + else if ('IAU2000' in name) { + defs['IAU2000:' + name.IAU2000] = name; + } + else { + console.log(name); + } + return; + } + + +} +globals(defs); +module.exports = defs; + +},{"./global":35,"./projString":38,"./wkt":66}],33:[function(_dereq_,module,exports){ +var Datum = _dereq_('./constants/Datum'); +var Ellipsoid = _dereq_('./constants/Ellipsoid'); +var extend = _dereq_('./extend'); +var datum = _dereq_('./datum'); +var EPSLN = 1.0e-10; +// ellipoid pj_set_ell.c +var SIXTH = 0.1666666666666666667; +/* 1/6 */ +var RA4 = 0.04722222222222222222; +/* 17/360 */ +var RA6 = 0.02215608465608465608; +module.exports = function(json) { + // DGR 2011-03-20 : nagrids -> nadgrids + if (json.datumCode && json.datumCode !== 'none') { + var datumDef = Datum[json.datumCode]; + if (datumDef) { + json.datum_params = datumDef.towgs84 ? datumDef.towgs84.split(',') : null; + json.ellps = datumDef.ellipse; + json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode; + } + } + if (!json.a) { // do we have an ellipsoid? + var ellipse = Ellipsoid[json.ellps] ? Ellipsoid[json.ellps] : Ellipsoid.WGS84; + extend(json, ellipse); + } + if (json.rf && !json.b) { + json.b = (1.0 - 1.0 / json.rf) * json.a; + } + if (json.rf === 0 || Math.abs(json.a - json.b) < EPSLN) { + json.sphere = true; + json.b = json.a; + } + json.a2 = json.a * json.a; // used in geocentric + json.b2 = json.b * json.b; // used in geocentric + json.es = (json.a2 - json.b2) / json.a2; // e ^ 2 + json.e = Math.sqrt(json.es); // eccentricity + if (json.R_A) { + json.a *= 1 - json.es * (SIXTH + json.es * (RA4 + json.es * RA6)); + json.a2 = json.a * json.a; + json.b2 = json.b * json.b; + json.es = 0; + } + json.ep2 = (json.a2 - json.b2) / json.b2; // used in geocentric + if (!json.k0) { + json.k0 = 1.0; //default value + } + //DGR 2010-11-12: axis + if (!json.axis) { + json.axis = "enu"; + } + + if (!json.datum) { + json.datum = datum(json); + } + return json; +}; + +},{"./constants/Datum":25,"./constants/Ellipsoid":26,"./datum":30,"./extend":34}],34:[function(_dereq_,module,exports){ +module.exports = function(destination, source) { + destination = destination || {}; + var value, property; + if (!source) { + return destination; + } + for (property in source) { + value = source[property]; + if (value !== undefined) { + destination[property] = value; + } + } + return destination; +}; + +},{}],35:[function(_dereq_,module,exports){ +module.exports = function(defs) { + defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees"); + defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees"); + defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs"); + + defs.WGS84 = defs['EPSG:4326']; + defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857 + defs.GOOGLE = defs['EPSG:3857']; + defs['EPSG:900913'] = defs['EPSG:3857']; + defs['EPSG:102113'] = defs['EPSG:3857']; +}; + +},{}],36:[function(_dereq_,module,exports){ +var proj4 = _dereq_('./core'); +proj4.defaultDatum = 'WGS84'; //default datum +proj4.Proj = _dereq_('./Proj'); +proj4.WGS84 = new proj4.Proj('WGS84'); +proj4.Point = _dereq_('./Point'); +proj4.toPoint = _dereq_("./common/toPoint"); +proj4.defs = _dereq_('./defs'); +proj4.transform = _dereq_('./transform'); +proj4.mgrs = _dereq_('mgrs'); +proj4.version = _dereq_('../package.json').version; +_dereq_('./includedProjections')(proj4); +module.exports = proj4; +},{"../package.json":68,"./Point":1,"./Proj":2,"./common/toPoint":23,"./core":29,"./defs":32,"./includedProjections":"hTEDpn","./transform":65,"mgrs":67}],37:[function(_dereq_,module,exports){ +var defs = _dereq_('./defs'); +var wkt = _dereq_('./wkt'); +var projStr = _dereq_('./projString'); +function testObj(code){ + return typeof code === 'string'; +} +function testDef(code){ + return code in defs; +} +function testWKT(code){ + var codeWords = ['GEOGCS','GEOCCS','PROJCS','LOCAL_CS']; + return codeWords.reduce(function(a,b){ + return a+1+code.indexOf(b); + },0); +} +function testProj(code){ + return code[0] === '+'; +} +function parse(code){ + if (testObj(code)) { + //check to see if this is a WKT string + if (testDef(code)) { + return defs[code]; + } + else if (testWKT(code)) { + return wkt(code); + } + else if (testProj(code)) { + return projStr(code); + } + }else{ + return code; + } +} + +module.exports = parse; +},{"./defs":32,"./projString":38,"./wkt":66}],38:[function(_dereq_,module,exports){ +var D2R = 0.01745329251994329577; +var PrimeMeridian = _dereq_('./constants/PrimeMeridian'); +var units = _dereq_('./constants/units'); + +module.exports = function(defData) { + var self = {}; + var paramObj = {}; + defData.split("+").map(function(v) { + return v.trim(); + }).filter(function(a) { + return a; + }).forEach(function(a) { + var split = a.split("="); + split.push(true); + paramObj[split[0].toLowerCase()] = split[1]; + }); + var paramName, paramVal, paramOutname; + var params = { + proj: 'projName', + datum: 'datumCode', + rf: function(v) { + self.rf = parseFloat(v); + }, + lat_0: function(v) { + self.lat0 = v * D2R; + }, + lat_1: function(v) { + self.lat1 = v * D2R; + }, + lat_2: function(v) { + self.lat2 = v * D2R; + }, + lat_ts: function(v) { + self.lat_ts = v * D2R; + }, + lon_0: function(v) { + self.long0 = v * D2R; + }, + lon_1: function(v) { + self.long1 = v * D2R; + }, + lon_2: function(v) { + self.long2 = v * D2R; + }, + alpha: function(v) { + self.alpha = parseFloat(v) * D2R; + }, + lonc: function(v) { + self.longc = v * D2R; + }, + x_0: function(v) { + self.x0 = parseFloat(v); + }, + y_0: function(v) { + self.y0 = parseFloat(v); + }, + k_0: function(v) { + self.k0 = parseFloat(v); + }, + k: function(v) { + self.k0 = parseFloat(v); + }, + a: function(v) { + self.a = parseFloat(v); + }, + b: function(v) { + self.b = parseFloat(v); + }, + r_a: function() { + self.R_A = true; + }, + zone: function(v) { + self.zone = parseInt(v, 10); + }, + south: function() { + self.utmSouth = true; + }, + towgs84: function(v) { + self.datum_params = v.split(",").map(function(a) { + return parseFloat(a); + }); + }, + to_meter: function(v) { + self.to_meter = parseFloat(v); + }, + units: function(v) { + self.units = v; + if (units[v]) { + self.to_meter = units[v].to_meter; + } + }, + from_greenwich: function(v) { + self.from_greenwich = v * D2R; + }, + pm: function(v) { + self.from_greenwich = (PrimeMeridian[v] ? PrimeMeridian[v] : parseFloat(v)) * D2R; + }, + nadgrids: function(v) { + if (v === '@null') { + self.datumCode = 'none'; + } + else { + self.nadgrids = v; + } + }, + axis: function(v) { + var legalAxis = "ewnsud"; + if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) { + self.axis = v; + } + } + }; + for (paramName in paramObj) { + paramVal = paramObj[paramName]; + if (paramName in params) { + paramOutname = params[paramName]; + if (typeof paramOutname === 'function') { + paramOutname(paramVal); + } + else { + self[paramOutname] = paramVal; + } + } + else { + self[paramName] = paramVal; + } + } + if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){ + self.datumCode = self.datumCode.toLowerCase(); + } + return self; +}; + +},{"./constants/PrimeMeridian":27,"./constants/units":28}],39:[function(_dereq_,module,exports){ +var projs = [ + _dereq_('./projections/merc'), + _dereq_('./projections/longlat') +]; +var names = {}; +var projStore = []; + +function add(proj, i) { + var len = projStore.length; + if (!proj.names) { + console.log(i); + return true; + } + projStore[len] = proj; + proj.names.forEach(function(n) { + names[n.toLowerCase()] = len; + }); + return this; +} + +exports.add = add; + +exports.get = function(name) { + if (!name) { + return false; + } + var n = name.toLowerCase(); + if (typeof names[n] !== 'undefined' && projStore[names[n]]) { + return projStore[names[n]]; + } +}; +exports.start = function() { + projs.forEach(add); +}; + +},{"./projections/longlat":51,"./projections/merc":52}],40:[function(_dereq_,module,exports){ +var EPSLN = 1.0e-10; +var msfnz = _dereq_('../common/msfnz'); +var qsfnz = _dereq_('../common/qsfnz'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var asinz = _dereq_('../common/asinz'); +exports.init = function() { + + if (Math.abs(this.lat1 + this.lat2) < EPSLN) { + return; + } + this.temp = this.b / this.a; + this.es = 1 - Math.pow(this.temp, 2); + this.e3 = Math.sqrt(this.es); + + this.sin_po = Math.sin(this.lat1); + this.cos_po = Math.cos(this.lat1); + this.t1 = this.sin_po; + this.con = this.sin_po; + this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po); + this.qs1 = qsfnz(this.e3, this.sin_po, this.cos_po); + + this.sin_po = Math.sin(this.lat2); + this.cos_po = Math.cos(this.lat2); + this.t2 = this.sin_po; + this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po); + this.qs2 = qsfnz(this.e3, this.sin_po, this.cos_po); + + this.sin_po = Math.sin(this.lat0); + this.cos_po = Math.cos(this.lat0); + this.t3 = this.sin_po; + this.qs0 = qsfnz(this.e3, this.sin_po, this.cos_po); + + if (Math.abs(this.lat1 - this.lat2) > EPSLN) { + this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1); + } + else { + this.ns0 = this.con; + } + this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1; + this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0; +}; + +/* Albers Conical Equal Area forward equations--mapping lat,long to x,y + -------------------------------------------------------------------*/ +exports.forward = function(p) { + + var lon = p.x; + var lat = p.y; + + this.sin_phi = Math.sin(lat); + this.cos_phi = Math.cos(lat); + + var qs = qsfnz(this.e3, this.sin_phi, this.cos_phi); + var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0; + var theta = this.ns0 * adjust_lon(lon - this.long0); + var x = rh1 * Math.sin(theta) + this.x0; + var y = this.rh - rh1 * Math.cos(theta) + this.y0; + + p.x = x; + p.y = y; + return p; +}; + + +exports.inverse = function(p) { + var rh1, qs, con, theta, lon, lat; + + p.x -= this.x0; + p.y = this.rh - p.y + this.y0; + if (this.ns0 >= 0) { + rh1 = Math.sqrt(p.x * p.x + p.y * p.y); + con = 1; + } + else { + rh1 = -Math.sqrt(p.x * p.x + p.y * p.y); + con = -1; + } + theta = 0; + if (rh1 !== 0) { + theta = Math.atan2(con * p.x, con * p.y); + } + con = rh1 * this.ns0 / this.a; + if (this.sphere) { + lat = Math.asin((this.c - con * con) / (2 * this.ns0)); + } + else { + qs = (this.c - con * con) / this.ns0; + lat = this.phi1z(this.e3, qs); + } + + lon = adjust_lon(theta / this.ns0 + this.long0); + p.x = lon; + p.y = lat; + return p; +}; + +/* Function to compute phi1, the latitude for the inverse of the + Albers Conical Equal-Area projection. +-------------------------------------------*/ +exports.phi1z = function(eccent, qs) { + var sinphi, cosphi, con, com, dphi; + var phi = asinz(0.5 * qs); + if (eccent < EPSLN) { + return phi; + } + + var eccnts = eccent * eccent; + for (var i = 1; i <= 25; i++) { + sinphi = Math.sin(phi); + cosphi = Math.cos(phi); + con = eccent * sinphi; + com = 1 - con * con; + dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con))); + phi = phi + dphi; + if (Math.abs(dphi) <= 1e-7) { + return phi; + } + } + return null; +}; +exports.names = ["Albers_Conic_Equal_Area", "Albers", "aea"]; + +},{"../common/adjust_lon":5,"../common/asinz":6,"../common/msfnz":15,"../common/qsfnz":20}],41:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +var mlfn = _dereq_('../common/mlfn'); +var e0fn = _dereq_('../common/e0fn'); +var e1fn = _dereq_('../common/e1fn'); +var e2fn = _dereq_('../common/e2fn'); +var e3fn = _dereq_('../common/e3fn'); +var gN = _dereq_('../common/gN'); +var asinz = _dereq_('../common/asinz'); +var imlfn = _dereq_('../common/imlfn'); +exports.init = function() { + this.sin_p12 = Math.sin(this.lat0); + this.cos_p12 = Math.cos(this.lat0); +}; + +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + var sinphi = Math.sin(p.y); + var cosphi = Math.cos(p.y); + var dlon = adjust_lon(lon - this.long0); + var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5; + if (this.sphere) { + if (Math.abs(this.sin_p12 - 1) <= EPSLN) { + //North Pole case + p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon); + p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon); + return p; + } + else if (Math.abs(this.sin_p12 + 1) <= EPSLN) { + //South Pole case + p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon); + p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon); + return p; + } + else { + //default case + cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon); + c = Math.acos(cos_c); + kp = c / Math.sin(c); + p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon); + p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon)); + return p; + } + } + else { + e0 = e0fn(this.es); + e1 = e1fn(this.es); + e2 = e2fn(this.es); + e3 = e3fn(this.es); + if (Math.abs(this.sin_p12 - 1) <= EPSLN) { + //North Pole case + Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); + Ml = this.a * mlfn(e0, e1, e2, e3, lat); + p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon); + p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon); + return p; + } + else if (Math.abs(this.sin_p12 + 1) <= EPSLN) { + //South Pole case + Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); + Ml = this.a * mlfn(e0, e1, e2, e3, lat); + p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon); + p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon); + return p; + } + else { + //Default case + tanphi = sinphi / cosphi; + Nl1 = gN(this.a, this.e, this.sin_p12); + Nl = gN(this.a, this.e, sinphi); + psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi)); + Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon)); + if (Az === 0) { + s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi)); + } + else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) { + s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi)); + } + else { + s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az)); + } + G = this.e * this.sin_p12 / Math.sqrt(1 - this.es); + H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es); + GH = G * H; + Hs = H * H; + s2 = s * s; + s3 = s2 * s; + s4 = s3 * s; + s5 = s4 * s; + c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH); + p.x = this.x0 + c * Math.sin(Az); + p.y = this.y0 + c * Math.cos(Az); + return p; + } + } + + +}; + +exports.inverse = function(p) { + p.x -= this.x0; + p.y -= this.y0; + var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F; + if (this.sphere) { + rh = Math.sqrt(p.x * p.x + p.y * p.y); + if (rh > (2 * HALF_PI * this.a)) { + return; + } + z = rh / this.a; + + sinz = Math.sin(z); + cosz = Math.cos(z); + + lon = this.long0; + if (Math.abs(rh) <= EPSLN) { + lat = this.lat0; + } + else { + lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh); + con = Math.abs(this.lat0) - HALF_PI; + if (Math.abs(con) <= EPSLN) { + if (this.lat0 >= 0) { + lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y)); + } + else { + lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y)); + } + } + else { + /*con = cosz - this.sin_p12 * Math.sin(lat); + if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) { + //no-op, just keep the lon value as is + } else { + var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh)); + lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh))); + }*/ + lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz)); + } + } + + p.x = lon; + p.y = lat; + return p; + } + else { + e0 = e0fn(this.es); + e1 = e1fn(this.es); + e2 = e2fn(this.es); + e3 = e3fn(this.es); + if (Math.abs(this.sin_p12 - 1) <= EPSLN) { + //North pole case + Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); + rh = Math.sqrt(p.x * p.x + p.y * p.y); + M = Mlp - rh; + lat = imlfn(M / this.a, e0, e1, e2, e3); + lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y)); + p.x = lon; + p.y = lat; + return p; + } + else if (Math.abs(this.sin_p12 + 1) <= EPSLN) { + //South pole case + Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI); + rh = Math.sqrt(p.x * p.x + p.y * p.y); + M = rh - Mlp; + + lat = imlfn(M / this.a, e0, e1, e2, e3); + lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y)); + p.x = lon; + p.y = lat; + return p; + } + else { + //default case + rh = Math.sqrt(p.x * p.x + p.y * p.y); + Az = Math.atan2(p.x, p.y); + N1 = gN(this.a, this.e, this.sin_p12); + cosAz = Math.cos(Az); + tmp = this.e * this.cos_p12 * cosAz; + A = -tmp * tmp / (1 - this.es); + B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es); + D = rh / N1; + Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24; + F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6; + psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz); + lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi))); + lat = Math.atan((1 - this.es * F * this.sin_p12 / Math.sin(psi)) * Math.tan(psi) / (1 - this.es)); + p.x = lon; + p.y = lat; + return p; + } + } + +}; +exports.names = ["Azimuthal_Equidistant", "aeqd"]; + +},{"../common/adjust_lon":5,"../common/asinz":6,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/imlfn":12,"../common/mlfn":14}],42:[function(_dereq_,module,exports){ +var mlfn = _dereq_('../common/mlfn'); +var e0fn = _dereq_('../common/e0fn'); +var e1fn = _dereq_('../common/e1fn'); +var e2fn = _dereq_('../common/e2fn'); +var e3fn = _dereq_('../common/e3fn'); +var gN = _dereq_('../common/gN'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var adjust_lat = _dereq_('../common/adjust_lat'); +var imlfn = _dereq_('../common/imlfn'); +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +exports.init = function() { + if (!this.sphere) { + this.e0 = e0fn(this.es); + this.e1 = e1fn(this.es); + this.e2 = e2fn(this.es); + this.e3 = e3fn(this.es); + this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); + } +}; + + + +/* Cassini forward equations--mapping lat,long to x,y + -----------------------------------------------------------------------*/ +exports.forward = function(p) { + + /* Forward equations + -----------------*/ + var x, y; + var lam = p.x; + var phi = p.y; + lam = adjust_lon(lam - this.long0); + + if (this.sphere) { + x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam)); + y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0); + } + else { + //ellipsoid + var sinphi = Math.sin(phi); + var cosphi = Math.cos(phi); + var nl = gN(this.a, this.e, sinphi); + var tl = Math.tan(phi) * Math.tan(phi); + var al = lam * Math.cos(phi); + var asq = al * al; + var cl = this.es * cosphi * cosphi / (1 - this.es); + var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi); + + x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120)); + y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24); + + + } + + p.x = x + this.x0; + p.y = y + this.y0; + return p; +}; + +/* Inverse equations + -----------------*/ +exports.inverse = function(p) { + p.x -= this.x0; + p.y -= this.y0; + var x = p.x / this.a; + var y = p.y / this.a; + var phi, lam; + + if (this.sphere) { + var dd = y + this.lat0; + phi = Math.asin(Math.sin(dd) * Math.cos(x)); + lam = Math.atan2(Math.tan(x), Math.cos(dd)); + } + else { + /* ellipsoid */ + var ml1 = this.ml0 / this.a + y; + var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3); + if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) { + p.x = this.long0; + p.y = HALF_PI; + if (y < 0) { + p.y *= -1; + } + return p; + } + var nl1 = gN(this.a, this.e, Math.sin(phi1)); + + var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es); + var tl1 = Math.pow(Math.tan(phi1), 2); + var dl = x * this.a / nl1; + var dsq = dl * dl; + phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24); + lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1); + + } + + p.x = adjust_lon(lam + this.long0); + p.y = adjust_lat(phi); + return p; + +}; +exports.names = ["Cassini", "Cassini_Soldner", "cass"]; +},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/imlfn":12,"../common/mlfn":14}],43:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var qsfnz = _dereq_('../common/qsfnz'); +var msfnz = _dereq_('../common/msfnz'); +var iqsfnz = _dereq_('../common/iqsfnz'); +/* + reference: + "Cartographic Projection Procedures for the UNIX Environment- + A User's Manual" by Gerald I. Evenden, + USGS Open File Report 90-284and Release 4 Interim Reports (2003) +*/ +exports.init = function() { + //no-op + if (!this.sphere) { + this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)); + } +}; + + +/* Cylindrical Equal Area forward equations--mapping lat,long to x,y + ------------------------------------------------------------*/ +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + var x, y; + /* Forward equations + -----------------*/ + var dlon = adjust_lon(lon - this.long0); + if (this.sphere) { + x = this.x0 + this.a * dlon * Math.cos(this.lat_ts); + y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts); + } + else { + var qs = qsfnz(this.e, Math.sin(lat)); + x = this.x0 + this.a * this.k0 * dlon; + y = this.y0 + this.a * qs * 0.5 / this.k0; + } + + p.x = x; + p.y = y; + return p; +}; + +/* Cylindrical Equal Area inverse equations--mapping x,y to lat/long + ------------------------------------------------------------*/ +exports.inverse = function(p) { + p.x -= this.x0; + p.y -= this.y0; + var lon, lat; + + if (this.sphere) { + lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts)); + lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts)); + } + else { + lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a); + lon = adjust_lon(this.long0 + p.x / (this.a * this.k0)); + } + + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["cea"]; + +},{"../common/adjust_lon":5,"../common/iqsfnz":13,"../common/msfnz":15,"../common/qsfnz":20}],44:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var adjust_lat = _dereq_('../common/adjust_lat'); +exports.init = function() { + + this.x0 = this.x0 || 0; + this.y0 = this.y0 || 0; + this.lat0 = this.lat0 || 0; + this.long0 = this.long0 || 0; + this.lat_ts = this.lat_ts || 0; + this.title = this.title || "Equidistant Cylindrical (Plate Carre)"; + + this.rc = Math.cos(this.lat_ts); +}; + + +// forward equations--mapping lat,long to x,y +// ----------------------------------------------------------------- +exports.forward = function(p) { + + var lon = p.x; + var lat = p.y; + + var dlon = adjust_lon(lon - this.long0); + var dlat = adjust_lat(lat - this.lat0); + p.x = this.x0 + (this.a * dlon * this.rc); + p.y = this.y0 + (this.a * dlat); + return p; +}; + +// inverse equations--mapping x,y to lat/long +// ----------------------------------------------------------------- +exports.inverse = function(p) { + + var x = p.x; + var y = p.y; + + p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc))); + p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a))); + return p; +}; +exports.names = ["Equirectangular", "Equidistant_Cylindrical", "eqc"]; + +},{"../common/adjust_lat":4,"../common/adjust_lon":5}],45:[function(_dereq_,module,exports){ +var e0fn = _dereq_('../common/e0fn'); +var e1fn = _dereq_('../common/e1fn'); +var e2fn = _dereq_('../common/e2fn'); +var e3fn = _dereq_('../common/e3fn'); +var msfnz = _dereq_('../common/msfnz'); +var mlfn = _dereq_('../common/mlfn'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var adjust_lat = _dereq_('../common/adjust_lat'); +var imlfn = _dereq_('../common/imlfn'); +var EPSLN = 1.0e-10; +exports.init = function() { + + /* Place parameters in static storage for common use + -------------------------------------------------*/ + // Standard Parallels cannot be equal and on opposite sides of the equator + if (Math.abs(this.lat1 + this.lat2) < EPSLN) { + return; + } + this.lat2 = this.lat2 || this.lat1; + this.temp = this.b / this.a; + this.es = 1 - Math.pow(this.temp, 2); + this.e = Math.sqrt(this.es); + this.e0 = e0fn(this.es); + this.e1 = e1fn(this.es); + this.e2 = e2fn(this.es); + this.e3 = e3fn(this.es); + + this.sinphi = Math.sin(this.lat1); + this.cosphi = Math.cos(this.lat1); + + this.ms1 = msfnz(this.e, this.sinphi, this.cosphi); + this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1); + + if (Math.abs(this.lat1 - this.lat2) < EPSLN) { + this.ns = this.sinphi; + } + else { + this.sinphi = Math.sin(this.lat2); + this.cosphi = Math.cos(this.lat2); + this.ms2 = msfnz(this.e, this.sinphi, this.cosphi); + this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2); + this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1); + } + this.g = this.ml1 + this.ms1 / this.ns; + this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); + this.rh = this.a * (this.g - this.ml0); +}; + + +/* Equidistant Conic forward equations--mapping lat,long to x,y + -----------------------------------------------------------*/ +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + var rh1; + + /* Forward equations + -----------------*/ + if (this.sphere) { + rh1 = this.a * (this.g - lat); + } + else { + var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat); + rh1 = this.a * (this.g - ml); + } + var theta = this.ns * adjust_lon(lon - this.long0); + var x = this.x0 + rh1 * Math.sin(theta); + var y = this.y0 + this.rh - rh1 * Math.cos(theta); + p.x = x; + p.y = y; + return p; +}; + +/* Inverse equations + -----------------*/ +exports.inverse = function(p) { + p.x -= this.x0; + p.y = this.rh - p.y + this.y0; + var con, rh1, lat, lon; + if (this.ns >= 0) { + rh1 = Math.sqrt(p.x * p.x + p.y * p.y); + con = 1; + } + else { + rh1 = -Math.sqrt(p.x * p.x + p.y * p.y); + con = -1; + } + var theta = 0; + if (rh1 !== 0) { + theta = Math.atan2(con * p.x, con * p.y); + } + + if (this.sphere) { + lon = adjust_lon(this.long0 + theta / this.ns); + lat = adjust_lat(this.g - rh1 / this.a); + p.x = lon; + p.y = lat; + return p; + } + else { + var ml = this.g - rh1 / this.a; + lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3); + lon = adjust_lon(this.long0 + theta / this.ns); + p.x = lon; + p.y = lat; + return p; + } + +}; +exports.names = ["Equidistant_Conic", "eqdc"]; + +},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/imlfn":12,"../common/mlfn":14,"../common/msfnz":15}],46:[function(_dereq_,module,exports){ +var FORTPI = Math.PI/4; +var srat = _dereq_('../common/srat'); +var HALF_PI = Math.PI/2; +var MAX_ITER = 20; +exports.init = function() { + var sphi = Math.sin(this.lat0); + var cphi = Math.cos(this.lat0); + cphi *= cphi; + this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi); + this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es)); + this.phic0 = Math.asin(sphi / this.C); + this.ratexp = 0.5 * this.C * this.e; + this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp)); +}; + +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + + p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI; + p.x = this.C * lon; + return p; +}; + +exports.inverse = function(p) { + var DEL_TOL = 1e-14; + var lon = p.x / this.C; + var lat = p.y; + var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C); + for (var i = MAX_ITER; i > 0; --i) { + lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI; + if (Math.abs(lat - p.y) < DEL_TOL) { + break; + } + p.y = lat; + } + /* convergence failed */ + if (!i) { + return null; + } + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["gauss"]; + +},{"../common/srat":22}],47:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var EPSLN = 1.0e-10; +var asinz = _dereq_('../common/asinz'); + +/* + reference: + Wolfram Mathworld "Gnomonic Projection" + http://mathworld.wolfram.com/GnomonicProjection.html + Accessed: 12th November 2009 + */ +exports.init = function() { + + /* Place parameters in static storage for common use + -------------------------------------------------*/ + this.sin_p14 = Math.sin(this.lat0); + this.cos_p14 = Math.cos(this.lat0); + // Approximation for projecting points to the horizon (infinity) + this.infinity_dist = 1000 * this.a; + this.rc = 1; +}; + + +/* Gnomonic forward equations--mapping lat,long to x,y + ---------------------------------------------------*/ +exports.forward = function(p) { + var sinphi, cosphi; /* sin and cos value */ + var dlon; /* delta longitude value */ + var coslon; /* cos of longitude */ + var ksp; /* scale factor */ + var g; + var x, y; + var lon = p.x; + var lat = p.y; + /* Forward equations + -----------------*/ + dlon = adjust_lon(lon - this.long0); + + sinphi = Math.sin(lat); + cosphi = Math.cos(lat); + + coslon = Math.cos(dlon); + g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon; + ksp = 1; + if ((g > 0) || (Math.abs(g) <= EPSLN)) { + x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g; + y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g; + } + else { + + // Point is in the opposing hemisphere and is unprojectable + // We still need to return a reasonable point, so we project + // to infinity, on a bearing + // equivalent to the northern hemisphere equivalent + // This is a reasonable approximation for short shapes and lines that + // straddle the horizon. + + x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon); + y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon); + + } + p.x = x; + p.y = y; + return p; +}; + + +exports.inverse = function(p) { + var rh; /* Rho */ + var sinc, cosc; + var c; + var lon, lat; + + /* Inverse equations + -----------------*/ + p.x = (p.x - this.x0) / this.a; + p.y = (p.y - this.y0) / this.a; + + p.x /= this.k0; + p.y /= this.k0; + + if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) { + c = Math.atan2(rh, this.rc); + sinc = Math.sin(c); + cosc = Math.cos(c); + + lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh); + lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc); + lon = adjust_lon(this.long0 + lon); + } + else { + lat = this.phic0; + lon = 0; + } + + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["gnom"]; + +},{"../common/adjust_lon":5,"../common/asinz":6}],48:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +exports.init = function() { + this.a = 6377397.155; + this.es = 0.006674372230614; + this.e = Math.sqrt(this.es); + if (!this.lat0) { + this.lat0 = 0.863937979737193; + } + if (!this.long0) { + this.long0 = 0.7417649320975901 - 0.308341501185665; + } + /* if scale not set default to 0.9999 */ + if (!this.k0) { + this.k0 = 0.9999; + } + this.s45 = 0.785398163397448; /* 45 */ + this.s90 = 2 * this.s45; + this.fi0 = this.lat0; + this.e2 = this.es; + this.e = Math.sqrt(this.e2); + this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2)); + this.uq = 1.04216856380474; + this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa); + this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2); + this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g; + this.k1 = this.k0; + this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2)); + this.s0 = 1.37008346281555; + this.n = Math.sin(this.s0); + this.ro0 = this.k1 * this.n0 / Math.tan(this.s0); + this.ad = this.s90 - this.uq; +}; + +/* ellipsoid */ +/* calculate xy from lat/lon */ +/* Constants, identical to inverse transform function */ +exports.forward = function(p) { + var gfi, u, deltav, s, d, eps, ro; + var lon = p.x; + var lat = p.y; + var delta_lon = adjust_lon(lon - this.long0); + /* Transformation */ + gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2)); + u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45); + deltav = -delta_lon * this.alfa; + s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav)); + d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s)); + eps = this.n * d; + ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n); + p.y = ro * Math.cos(eps) / 1; + p.x = ro * Math.sin(eps) / 1; + + if (!this.czech) { + p.y *= -1; + p.x *= -1; + } + return (p); +}; + +/* calculate lat/lon from xy */ +exports.inverse = function(p) { + var u, deltav, s, d, eps, ro, fi1; + var ok; + + /* Transformation */ + /* revert y, x*/ + var tmp = p.x; + p.x = p.y; + p.y = tmp; + if (!this.czech) { + p.y *= -1; + p.x *= -1; + } + ro = Math.sqrt(p.x * p.x + p.y * p.y); + eps = Math.atan2(p.y, p.x); + d = eps / Math.sin(this.s0); + s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45); + u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d)); + deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u)); + p.x = this.long0 - deltav / this.alfa; + fi1 = u; + ok = 0; + var iter = 0; + do { + p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45); + if (Math.abs(fi1 - p.y) < 0.0000000001) { + ok = 1; + } + fi1 = p.y; + iter += 1; + } while (ok === 0 && iter < 15); + if (iter >= 15) { + return null; + } + + return (p); +}; +exports.names = ["Krovak", "krovak"]; + +},{"../common/adjust_lon":5}],49:[function(_dereq_,module,exports){ +var HALF_PI = Math.PI/2; +var FORTPI = Math.PI/4; +var EPSLN = 1.0e-10; +var qsfnz = _dereq_('../common/qsfnz'); +var adjust_lon = _dereq_('../common/adjust_lon'); +/* + reference + "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, + The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. + */ + +exports.S_POLE = 1; +exports.N_POLE = 2; +exports.EQUIT = 3; +exports.OBLIQ = 4; + + +/* Initialize the Lambert Azimuthal Equal Area projection + ------------------------------------------------------*/ +exports.init = function() { + var t = Math.abs(this.lat0); + if (Math.abs(t - HALF_PI) < EPSLN) { + this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE; + } + else if (Math.abs(t) < EPSLN) { + this.mode = this.EQUIT; + } + else { + this.mode = this.OBLIQ; + } + if (this.es > 0) { + var sinphi; + + this.qp = qsfnz(this.e, 1); + this.mmf = 0.5 / (1 - this.es); + this.apa = this.authset(this.es); + switch (this.mode) { + case this.N_POLE: + this.dd = 1; + break; + case this.S_POLE: + this.dd = 1; + break; + case this.EQUIT: + this.rq = Math.sqrt(0.5 * this.qp); + this.dd = 1 / this.rq; + this.xmf = 1; + this.ymf = 0.5 * this.qp; + break; + case this.OBLIQ: + this.rq = Math.sqrt(0.5 * this.qp); + sinphi = Math.sin(this.lat0); + this.sinb1 = qsfnz(this.e, sinphi) / this.qp; + this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1); + this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1); + this.ymf = (this.xmf = this.rq) / this.dd; + this.xmf *= this.dd; + break; + } + } + else { + if (this.mode === this.OBLIQ) { + this.sinph0 = Math.sin(this.lat0); + this.cosph0 = Math.cos(this.lat0); + } + } +}; + +/* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y + -----------------------------------------------------------------------*/ +exports.forward = function(p) { + + /* Forward equations + -----------------*/ + var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi; + var lam = p.x; + var phi = p.y; + + lam = adjust_lon(lam - this.long0); + + if (this.sphere) { + sinphi = Math.sin(phi); + cosphi = Math.cos(phi); + coslam = Math.cos(lam); + if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { + y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam; + if (y <= EPSLN) { + return null; + } + y = Math.sqrt(2 / y); + x = y * cosphi * Math.sin(lam); + y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam; + } + else if (this.mode === this.N_POLE || this.mode === this.S_POLE) { + if (this.mode === this.N_POLE) { + coslam = -coslam; + } + if (Math.abs(phi + this.phi0) < EPSLN) { + return null; + } + y = FORTPI - phi * 0.5; + y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y)); + x = y * Math.sin(lam); + y *= coslam; + } + } + else { + sinb = 0; + cosb = 0; + b = 0; + coslam = Math.cos(lam); + sinlam = Math.sin(lam); + sinphi = Math.sin(phi); + q = qsfnz(this.e, sinphi); + if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { + sinb = q / this.qp; + cosb = Math.sqrt(1 - sinb * sinb); + } + switch (this.mode) { + case this.OBLIQ: + b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam; + break; + case this.EQUIT: + b = 1 + cosb * coslam; + break; + case this.N_POLE: + b = HALF_PI + phi; + q = this.qp - q; + break; + case this.S_POLE: + b = phi - HALF_PI; + q = this.qp + q; + break; + } + if (Math.abs(b) < EPSLN) { + return null; + } + switch (this.mode) { + case this.OBLIQ: + case this.EQUIT: + b = Math.sqrt(2 / b); + if (this.mode === this.OBLIQ) { + y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam); + } + else { + y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf; + } + x = this.xmf * b * cosb * sinlam; + break; + case this.N_POLE: + case this.S_POLE: + if (q >= 0) { + x = (b = Math.sqrt(q)) * sinlam; + y = coslam * ((this.mode === this.S_POLE) ? b : -b); + } + else { + x = y = 0; + } + break; + } + } + + p.x = this.a * x + this.x0; + p.y = this.a * y + this.y0; + return p; +}; + +/* Inverse equations + -----------------*/ +exports.inverse = function(p) { + p.x -= this.x0; + p.y -= this.y0; + var x = p.x / this.a; + var y = p.y / this.a; + var lam, phi, cCe, sCe, q, rho, ab; + + if (this.sphere) { + var cosz = 0, + rh, sinz = 0; + + rh = Math.sqrt(x * x + y * y); + phi = rh * 0.5; + if (phi > 1) { + return null; + } + phi = 2 * Math.asin(phi); + if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { + sinz = Math.sin(phi); + cosz = Math.cos(phi); + } + switch (this.mode) { + case this.EQUIT: + phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh); + x *= sinz; + y = cosz * rh; + break; + case this.OBLIQ: + phi = (Math.abs(rh) <= EPSLN) ? this.phi0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh); + x *= sinz * this.cosph0; + y = (cosz - Math.sin(phi) * this.sinph0) * rh; + break; + case this.N_POLE: + y = -y; + phi = HALF_PI - phi; + break; + case this.S_POLE: + phi -= HALF_PI; + break; + } + lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y); + } + else { + ab = 0; + if (this.mode === this.OBLIQ || this.mode === this.EQUIT) { + x /= this.dd; + y *= this.dd; + rho = Math.sqrt(x * x + y * y); + if (rho < EPSLN) { + p.x = 0; + p.y = this.phi0; + return p; + } + sCe = 2 * Math.asin(0.5 * rho / this.rq); + cCe = Math.cos(sCe); + x *= (sCe = Math.sin(sCe)); + if (this.mode === this.OBLIQ) { + ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho; + q = this.qp * ab; + y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe; + } + else { + ab = y * sCe / rho; + q = this.qp * ab; + y = rho * cCe; + } + } + else if (this.mode === this.N_POLE || this.mode === this.S_POLE) { + if (this.mode === this.N_POLE) { + y = -y; + } + q = (x * x + y * y); + if (!q) { + p.x = 0; + p.y = this.phi0; + return p; + } + ab = 1 - q / this.qp; + if (this.mode === this.S_POLE) { + ab = -ab; + } + } + lam = Math.atan2(x, y); + phi = this.authlat(Math.asin(ab), this.apa); + } + + + p.x = adjust_lon(this.long0 + lam); + p.y = phi; + return p; +}; + +/* determine latitude from authalic latitude */ +exports.P00 = 0.33333333333333333333; +exports.P01 = 0.17222222222222222222; +exports.P02 = 0.10257936507936507936; +exports.P10 = 0.06388888888888888888; +exports.P11 = 0.06640211640211640211; +exports.P20 = 0.01641501294219154443; + +exports.authset = function(es) { + var t; + var APA = []; + APA[0] = es * this.P00; + t = es * es; + APA[0] += t * this.P01; + APA[1] = t * this.P10; + t *= es; + APA[0] += t * this.P02; + APA[1] += t * this.P11; + APA[2] = t * this.P20; + return APA; +}; + +exports.authlat = function(beta, APA) { + var t = beta + beta; + return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t)); +}; +exports.names = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"]; + +},{"../common/adjust_lon":5,"../common/qsfnz":20}],50:[function(_dereq_,module,exports){ +var EPSLN = 1.0e-10; +var msfnz = _dereq_('../common/msfnz'); +var tsfnz = _dereq_('../common/tsfnz'); +var HALF_PI = Math.PI/2; +var sign = _dereq_('../common/sign'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var phi2z = _dereq_('../common/phi2z'); +exports.init = function() { + + // array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north + //double c_lat; /* center latitude */ + //double c_lon; /* center longitude */ + //double lat1; /* first standard parallel */ + //double lat2; /* second standard parallel */ + //double r_maj; /* major axis */ + //double r_min; /* minor axis */ + //double false_east; /* x offset in meters */ + //double false_north; /* y offset in meters */ + + if (!this.lat2) { + this.lat2 = this.lat1; + } //if lat2 is not defined + if (!this.k0) { + this.k0 = 1; + } + this.x0 = this.x0 || 0; + this.y0 = this.y0 || 0; + // Standard Parallels cannot be equal and on opposite sides of the equator + if (Math.abs(this.lat1 + this.lat2) < EPSLN) { + return; + } + + var temp = this.b / this.a; + this.e = Math.sqrt(1 - temp * temp); + + var sin1 = Math.sin(this.lat1); + var cos1 = Math.cos(this.lat1); + var ms1 = msfnz(this.e, sin1, cos1); + var ts1 = tsfnz(this.e, this.lat1, sin1); + + var sin2 = Math.sin(this.lat2); + var cos2 = Math.cos(this.lat2); + var ms2 = msfnz(this.e, sin2, cos2); + var ts2 = tsfnz(this.e, this.lat2, sin2); + + var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0)); + + if (Math.abs(this.lat1 - this.lat2) > EPSLN) { + this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2); + } + else { + this.ns = sin1; + } + if (isNaN(this.ns)) { + this.ns = sin1; + } + this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns)); + this.rh = this.a * this.f0 * Math.pow(ts0, this.ns); + if (!this.title) { + this.title = "Lambert Conformal Conic"; + } +}; + + +// Lambert Conformal conic forward equations--mapping lat,long to x,y +// ----------------------------------------------------------------- +exports.forward = function(p) { + + var lon = p.x; + var lat = p.y; + + // singular cases : + if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) { + lat = sign(lat) * (HALF_PI - 2 * EPSLN); + } + + var con = Math.abs(Math.abs(lat) - HALF_PI); + var ts, rh1; + if (con > EPSLN) { + ts = tsfnz(this.e, lat, Math.sin(lat)); + rh1 = this.a * this.f0 * Math.pow(ts, this.ns); + } + else { + con = lat * this.ns; + if (con <= 0) { + return null; + } + rh1 = 0; + } + var theta = this.ns * adjust_lon(lon - this.long0); + p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0; + p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0; + + return p; +}; + +// Lambert Conformal Conic inverse equations--mapping x,y to lat/long +// ----------------------------------------------------------------- +exports.inverse = function(p) { + + var rh1, con, ts; + var lat, lon; + var x = (p.x - this.x0) / this.k0; + var y = (this.rh - (p.y - this.y0) / this.k0); + if (this.ns > 0) { + rh1 = Math.sqrt(x * x + y * y); + con = 1; + } + else { + rh1 = -Math.sqrt(x * x + y * y); + con = -1; + } + var theta = 0; + if (rh1 !== 0) { + theta = Math.atan2((con * x), (con * y)); + } + if ((rh1 !== 0) || (this.ns > 0)) { + con = 1 / this.ns; + ts = Math.pow((rh1 / (this.a * this.f0)), con); + lat = phi2z(this.e, ts); + if (lat === -9999) { + return null; + } + } + else { + lat = -HALF_PI; + } + lon = adjust_lon(theta / this.ns + this.long0); + + p.x = lon; + p.y = lat; + return p; +}; + +exports.names = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"]; + +},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/sign":21,"../common/tsfnz":24}],51:[function(_dereq_,module,exports){ +exports.init = function() { + //no-op for longlat +}; + +function identity(pt) { + return pt; +} +exports.forward = identity; +exports.inverse = identity; +exports.names = ["longlat", "identity"]; + +},{}],52:[function(_dereq_,module,exports){ +var msfnz = _dereq_('../common/msfnz'); +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +var R2D = 57.29577951308232088; +var adjust_lon = _dereq_('../common/adjust_lon'); +var FORTPI = Math.PI/4; +var tsfnz = _dereq_('../common/tsfnz'); +var phi2z = _dereq_('../common/phi2z'); +exports.init = function() { + var con = this.b / this.a; + this.es = 1 - con * con; + if(!('x0' in this)){ + this.x0 = 0; + } + if(!('y0' in this)){ + this.y0 = 0; + } + this.e = Math.sqrt(this.es); + if (this.lat_ts) { + if (this.sphere) { + this.k0 = Math.cos(this.lat_ts); + } + else { + this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)); + } + } + else { + if (!this.k0) { + if (this.k) { + this.k0 = this.k; + } + else { + this.k0 = 1; + } + } + } +}; + +/* Mercator forward equations--mapping lat,long to x,y + --------------------------------------------------*/ + +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + // convert to radians + if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) { + return null; + } + + var x, y; + if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) { + return null; + } + else { + if (this.sphere) { + x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0); + y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat)); + } + else { + var sinphi = Math.sin(lat); + var ts = tsfnz(this.e, lat, sinphi); + x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0); + y = this.y0 - this.a * this.k0 * Math.log(ts); + } + p.x = x; + p.y = y; + return p; + } +}; + + +/* Mercator inverse equations--mapping x,y to lat/long + --------------------------------------------------*/ +exports.inverse = function(p) { + + var x = p.x - this.x0; + var y = p.y - this.y0; + var lon, lat; + + if (this.sphere) { + lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0))); + } + else { + var ts = Math.exp(-y / (this.a * this.k0)); + lat = phi2z(this.e, ts); + if (lat === -9999) { + return null; + } + } + lon = adjust_lon(this.long0 + x / (this.a * this.k0)); + + p.x = lon; + p.y = lat; + return p; +}; + +exports.names = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"]; + +},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/tsfnz":24}],53:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +/* + reference + "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder, + The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355. + */ + + +/* Initialize the Miller Cylindrical projection + -------------------------------------------*/ +exports.init = function() { + //no-op +}; + + +/* Miller Cylindrical forward equations--mapping lat,long to x,y + ------------------------------------------------------------*/ +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + /* Forward equations + -----------------*/ + var dlon = adjust_lon(lon - this.long0); + var x = this.x0 + this.a * dlon; + var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25; + + p.x = x; + p.y = y; + return p; +}; + +/* Miller Cylindrical inverse equations--mapping x,y to lat/long + ------------------------------------------------------------*/ +exports.inverse = function(p) { + p.x -= this.x0; + p.y -= this.y0; + + var lon = adjust_lon(this.long0 + p.x / this.a); + var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4); + + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["Miller_Cylindrical", "mill"]; + +},{"../common/adjust_lon":5}],54:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var EPSLN = 1.0e-10; +exports.init = function() {}; + +/* Mollweide forward equations--mapping lat,long to x,y + ----------------------------------------------------*/ +exports.forward = function(p) { + + /* Forward equations + -----------------*/ + var lon = p.x; + var lat = p.y; + + var delta_lon = adjust_lon(lon - this.long0); + var theta = lat; + var con = Math.PI * Math.sin(lat); + + /* Iterate using the Newton-Raphson method to find theta + -----------------------------------------------------*/ + for (var i = 0; true; i++) { + var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta)); + theta += delta_theta; + if (Math.abs(delta_theta) < EPSLN) { + break; + } + } + theta /= 2; + + /* If the latitude is 90 deg, force the x coordinate to be "0 + false easting" + this is done here because of precision problems with "cos(theta)" + --------------------------------------------------------------------------*/ + if (Math.PI / 2 - Math.abs(lat) < EPSLN) { + delta_lon = 0; + } + var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0; + var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0; + + p.x = x; + p.y = y; + return p; +}; + +exports.inverse = function(p) { + var theta; + var arg; + + /* Inverse equations + -----------------*/ + p.x -= this.x0; + p.y -= this.y0; + arg = p.y / (1.4142135623731 * this.a); + + /* Because of division by zero problems, 'arg' can not be 1. Therefore + a number very close to one is used instead. + -------------------------------------------------------------------*/ + if (Math.abs(arg) > 0.999999999999) { + arg = 0.999999999999; + } + theta = Math.asin(arg); + var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta)))); + if (lon < (-Math.PI)) { + lon = -Math.PI; + } + if (lon > Math.PI) { + lon = Math.PI; + } + arg = (2 * theta + Math.sin(2 * theta)) / Math.PI; + if (Math.abs(arg) > 1) { + arg = 1; + } + var lat = Math.asin(arg); + + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["Mollweide", "moll"]; + +},{"../common/adjust_lon":5}],55:[function(_dereq_,module,exports){ +var SEC_TO_RAD = 4.84813681109535993589914102357e-6; +/* + reference + Department of Land and Survey Technical Circular 1973/32 + http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf + OSG Technical Report 4.1 + http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf + */ + +/** + * iterations: Number of iterations to refine inverse transform. + * 0 -> km accuracy + * 1 -> m accuracy -- suitable for most mapping applications + * 2 -> mm accuracy + */ +exports.iterations = 1; + +exports.init = function() { + this.A = []; + this.A[1] = 0.6399175073; + this.A[2] = -0.1358797613; + this.A[3] = 0.063294409; + this.A[4] = -0.02526853; + this.A[5] = 0.0117879; + this.A[6] = -0.0055161; + this.A[7] = 0.0026906; + this.A[8] = -0.001333; + this.A[9] = 0.00067; + this.A[10] = -0.00034; + + this.B_re = []; + this.B_im = []; + this.B_re[1] = 0.7557853228; + this.B_im[1] = 0; + this.B_re[2] = 0.249204646; + this.B_im[2] = 0.003371507; + this.B_re[3] = -0.001541739; + this.B_im[3] = 0.041058560; + this.B_re[4] = -0.10162907; + this.B_im[4] = 0.01727609; + this.B_re[5] = -0.26623489; + this.B_im[5] = -0.36249218; + this.B_re[6] = -0.6870983; + this.B_im[6] = -1.1651967; + + this.C_re = []; + this.C_im = []; + this.C_re[1] = 1.3231270439; + this.C_im[1] = 0; + this.C_re[2] = -0.577245789; + this.C_im[2] = -0.007809598; + this.C_re[3] = 0.508307513; + this.C_im[3] = -0.112208952; + this.C_re[4] = -0.15094762; + this.C_im[4] = 0.18200602; + this.C_re[5] = 1.01418179; + this.C_im[5] = 1.64497696; + this.C_re[6] = 1.9660549; + this.C_im[6] = 2.5127645; + + this.D = []; + this.D[1] = 1.5627014243; + this.D[2] = 0.5185406398; + this.D[3] = -0.03333098; + this.D[4] = -0.1052906; + this.D[5] = -0.0368594; + this.D[6] = 0.007317; + this.D[7] = 0.01220; + this.D[8] = 0.00394; + this.D[9] = -0.0013; +}; + +/** + New Zealand Map Grid Forward - long/lat to x/y + long/lat in radians + */ +exports.forward = function(p) { + var n; + var lon = p.x; + var lat = p.y; + + var delta_lat = lat - this.lat0; + var delta_lon = lon - this.long0; + + // 1. Calculate d_phi and d_psi ... // and d_lambda + // For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians. + var d_phi = delta_lat / SEC_TO_RAD * 1E-5; + var d_lambda = delta_lon; + var d_phi_n = 1; // d_phi^0 + + var d_psi = 0; + for (n = 1; n <= 10; n++) { + d_phi_n = d_phi_n * d_phi; + d_psi = d_psi + this.A[n] * d_phi_n; + } + + // 2. Calculate theta + var th_re = d_psi; + var th_im = d_lambda; + + // 3. Calculate z + var th_n_re = 1; + var th_n_im = 0; // theta^0 + var th_n_re1; + var th_n_im1; + + var z_re = 0; + var z_im = 0; + for (n = 1; n <= 6; n++) { + th_n_re1 = th_n_re * th_re - th_n_im * th_im; + th_n_im1 = th_n_im * th_re + th_n_re * th_im; + th_n_re = th_n_re1; + th_n_im = th_n_im1; + z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im; + z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im; + } + + // 4. Calculate easting and northing + p.x = (z_im * this.a) + this.x0; + p.y = (z_re * this.a) + this.y0; + + return p; +}; + + +/** + New Zealand Map Grid Inverse - x/y to long/lat + */ +exports.inverse = function(p) { + var n; + var x = p.x; + var y = p.y; + + var delta_x = x - this.x0; + var delta_y = y - this.y0; + + // 1. Calculate z + var z_re = delta_y / this.a; + var z_im = delta_x / this.a; + + // 2a. Calculate theta - first approximation gives km accuracy + var z_n_re = 1; + var z_n_im = 0; // z^0 + var z_n_re1; + var z_n_im1; + + var th_re = 0; + var th_im = 0; + for (n = 1; n <= 6; n++) { + z_n_re1 = z_n_re * z_re - z_n_im * z_im; + z_n_im1 = z_n_im * z_re + z_n_re * z_im; + z_n_re = z_n_re1; + z_n_im = z_n_im1; + th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im; + th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im; + } + + // 2b. Iterate to refine the accuracy of the calculation + // 0 iterations gives km accuracy + // 1 iteration gives m accuracy -- good enough for most mapping applications + // 2 iterations bives mm accuracy + for (var i = 0; i < this.iterations; i++) { + var th_n_re = th_re; + var th_n_im = th_im; + var th_n_re1; + var th_n_im1; + + var num_re = z_re; + var num_im = z_im; + for (n = 2; n <= 6; n++) { + th_n_re1 = th_n_re * th_re - th_n_im * th_im; + th_n_im1 = th_n_im * th_re + th_n_re * th_im; + th_n_re = th_n_re1; + th_n_im = th_n_im1; + num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im); + num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im); + } + + th_n_re = 1; + th_n_im = 0; + var den_re = this.B_re[1]; + var den_im = this.B_im[1]; + for (n = 2; n <= 6; n++) { + th_n_re1 = th_n_re * th_re - th_n_im * th_im; + th_n_im1 = th_n_im * th_re + th_n_re * th_im; + th_n_re = th_n_re1; + th_n_im = th_n_im1; + den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im); + den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im); + } + + // Complex division + var den2 = den_re * den_re + den_im * den_im; + th_re = (num_re * den_re + num_im * den_im) / den2; + th_im = (num_im * den_re - num_re * den_im) / den2; + } + + // 3. Calculate d_phi ... // and d_lambda + var d_psi = th_re; + var d_lambda = th_im; + var d_psi_n = 1; // d_psi^0 + + var d_phi = 0; + for (n = 1; n <= 9; n++) { + d_psi_n = d_psi_n * d_psi; + d_phi = d_phi + this.D[n] * d_psi_n; + } + + // 4. Calculate latitude and longitude + // d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians. + var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5); + var lon = this.long0 + d_lambda; + + p.x = lon; + p.y = lat; + + return p; +}; +exports.names = ["New_Zealand_Map_Grid", "nzmg"]; +},{}],56:[function(_dereq_,module,exports){ +var tsfnz = _dereq_('../common/tsfnz'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var phi2z = _dereq_('../common/phi2z'); +var HALF_PI = Math.PI/2; +var FORTPI = Math.PI/4; +var EPSLN = 1.0e-10; + +/* Initialize the Oblique Mercator projection + ------------------------------------------*/ +exports.init = function() { + this.no_off = this.no_off || false; + this.no_rot = this.no_rot || false; + + if (isNaN(this.k0)) { + this.k0 = 1; + } + var sinlat = Math.sin(this.lat0); + var coslat = Math.cos(this.lat0); + var con = this.e * sinlat; + + this.bl = Math.sqrt(1 + this.es / (1 - this.es) * Math.pow(coslat, 4)); + this.al = this.a * this.bl * this.k0 * Math.sqrt(1 - this.es) / (1 - con * con); + var t0 = tsfnz(this.e, this.lat0, sinlat); + var dl = this.bl / coslat * Math.sqrt((1 - this.es) / (1 - con * con)); + if (dl * dl < 1) { + dl = 1; + } + var fl; + var gl; + if (!isNaN(this.longc)) { + //Central point and azimuth method + + if (this.lat0 >= 0) { + fl = dl + Math.sqrt(dl * dl - 1); + } + else { + fl = dl - Math.sqrt(dl * dl - 1); + } + this.el = fl * Math.pow(t0, this.bl); + gl = 0.5 * (fl - 1 / fl); + this.gamma0 = Math.asin(Math.sin(this.alpha) / dl); + this.long0 = this.longc - Math.asin(gl * Math.tan(this.gamma0)) / this.bl; + + } + else { + //2 points method + var t1 = tsfnz(this.e, this.lat1, Math.sin(this.lat1)); + var t2 = tsfnz(this.e, this.lat2, Math.sin(this.lat2)); + if (this.lat0 >= 0) { + this.el = (dl + Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl); + } + else { + this.el = (dl - Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl); + } + var hl = Math.pow(t1, this.bl); + var ll = Math.pow(t2, this.bl); + fl = this.el / hl; + gl = 0.5 * (fl - 1 / fl); + var jl = (this.el * this.el - ll * hl) / (this.el * this.el + ll * hl); + var pl = (ll - hl) / (ll + hl); + var dlon12 = adjust_lon(this.long1 - this.long2); + this.long0 = 0.5 * (this.long1 + this.long2) - Math.atan(jl * Math.tan(0.5 * this.bl * (dlon12)) / pl) / this.bl; + this.long0 = adjust_lon(this.long0); + var dlon10 = adjust_lon(this.long1 - this.long0); + this.gamma0 = Math.atan(Math.sin(this.bl * (dlon10)) / gl); + this.alpha = Math.asin(dl * Math.sin(this.gamma0)); + } + + if (this.no_off) { + this.uc = 0; + } + else { + if (this.lat0 >= 0) { + this.uc = this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha)); + } + else { + this.uc = -1 * this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha)); + } + } + +}; + + +/* Oblique Mercator forward equations--mapping lat,long to x,y + ----------------------------------------------------------*/ +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + var dlon = adjust_lon(lon - this.long0); + var us, vs; + var con; + if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) { + if (lat > 0) { + con = -1; + } + else { + con = 1; + } + vs = this.al / this.bl * Math.log(Math.tan(FORTPI + con * this.gamma0 * 0.5)); + us = -1 * con * HALF_PI * this.al / this.bl; + } + else { + var t = tsfnz(this.e, lat, Math.sin(lat)); + var ql = this.el / Math.pow(t, this.bl); + var sl = 0.5 * (ql - 1 / ql); + var tl = 0.5 * (ql + 1 / ql); + var vl = Math.sin(this.bl * (dlon)); + var ul = (sl * Math.sin(this.gamma0) - vl * Math.cos(this.gamma0)) / tl; + if (Math.abs(Math.abs(ul) - 1) <= EPSLN) { + vs = Number.POSITIVE_INFINITY; + } + else { + vs = 0.5 * this.al * Math.log((1 - ul) / (1 + ul)) / this.bl; + } + if (Math.abs(Math.cos(this.bl * (dlon))) <= EPSLN) { + us = this.al * this.bl * (dlon); + } + else { + us = this.al * Math.atan2(sl * Math.cos(this.gamma0) + vl * Math.sin(this.gamma0), Math.cos(this.bl * dlon)) / this.bl; + } + } + + if (this.no_rot) { + p.x = this.x0 + us; + p.y = this.y0 + vs; + } + else { + + us -= this.uc; + p.x = this.x0 + vs * Math.cos(this.alpha) + us * Math.sin(this.alpha); + p.y = this.y0 + us * Math.cos(this.alpha) - vs * Math.sin(this.alpha); + } + return p; +}; + +exports.inverse = function(p) { + var us, vs; + if (this.no_rot) { + vs = p.y - this.y0; + us = p.x - this.x0; + } + else { + vs = (p.x - this.x0) * Math.cos(this.alpha) - (p.y - this.y0) * Math.sin(this.alpha); + us = (p.y - this.y0) * Math.cos(this.alpha) + (p.x - this.x0) * Math.sin(this.alpha); + us += this.uc; + } + var qp = Math.exp(-1 * this.bl * vs / this.al); + var sp = 0.5 * (qp - 1 / qp); + var tp = 0.5 * (qp + 1 / qp); + var vp = Math.sin(this.bl * us / this.al); + var up = (vp * Math.cos(this.gamma0) + sp * Math.sin(this.gamma0)) / tp; + var ts = Math.pow(this.el / Math.sqrt((1 + up) / (1 - up)), 1 / this.bl); + if (Math.abs(up - 1) < EPSLN) { + p.x = this.long0; + p.y = HALF_PI; + } + else if (Math.abs(up + 1) < EPSLN) { + p.x = this.long0; + p.y = -1 * HALF_PI; + } + else { + p.y = phi2z(this.e, ts); + p.x = adjust_lon(this.long0 - Math.atan2(sp * Math.cos(this.gamma0) - vp * Math.sin(this.gamma0), Math.cos(this.bl * us / this.al)) / this.bl); + } + return p; +}; + +exports.names = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "omerc"]; +},{"../common/adjust_lon":5,"../common/phi2z":16,"../common/tsfnz":24}],57:[function(_dereq_,module,exports){ +var e0fn = _dereq_('../common/e0fn'); +var e1fn = _dereq_('../common/e1fn'); +var e2fn = _dereq_('../common/e2fn'); +var e3fn = _dereq_('../common/e3fn'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var adjust_lat = _dereq_('../common/adjust_lat'); +var mlfn = _dereq_('../common/mlfn'); +var EPSLN = 1.0e-10; +var gN = _dereq_('../common/gN'); +var MAX_ITER = 20; +exports.init = function() { + /* Place parameters in static storage for common use + -------------------------------------------------*/ + this.temp = this.b / this.a; + this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles + this.e = Math.sqrt(this.es); + this.e0 = e0fn(this.es); + this.e1 = e1fn(this.es); + this.e2 = e2fn(this.es); + this.e3 = e3fn(this.es); + this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas +}; + + +/* Polyconic forward equations--mapping lat,long to x,y + ---------------------------------------------------*/ +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + var x, y, el; + var dlon = adjust_lon(lon - this.long0); + el = dlon * Math.sin(lat); + if (this.sphere) { + if (Math.abs(lat) <= EPSLN) { + x = this.a * dlon; + y = -1 * this.a * this.lat0; + } + else { + x = this.a * Math.sin(el) / Math.tan(lat); + y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat)); + } + } + else { + if (Math.abs(lat) <= EPSLN) { + x = this.a * dlon; + y = -1 * this.ml0; + } + else { + var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat); + x = nl * Math.sin(el); + y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el)); + } + + } + p.x = x + this.x0; + p.y = y + this.y0; + return p; +}; + + +/* Inverse equations + -----------------*/ +exports.inverse = function(p) { + var lon, lat, x, y, i; + var al, bl; + var phi, dphi; + x = p.x - this.x0; + y = p.y - this.y0; + + if (this.sphere) { + if (Math.abs(y + this.a * this.lat0) <= EPSLN) { + lon = adjust_lon(x / this.a + this.long0); + lat = 0; + } + else { + al = this.lat0 + y / this.a; + bl = x * x / this.a / this.a + al * al; + phi = al; + var tanphi; + for (i = MAX_ITER; i; --i) { + tanphi = Math.tan(phi); + dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1); + phi += dphi; + if (Math.abs(dphi) <= EPSLN) { + lat = phi; + break; + } + } + lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat)); + } + } + else { + if (Math.abs(y + this.ml0) <= EPSLN) { + lat = 0; + lon = adjust_lon(this.long0 + x / this.a); + } + else { + + al = (this.ml0 + y) / this.a; + bl = x * x / this.a / this.a + al * al; + phi = al; + var cl, mln, mlnp, ma; + var con; + for (i = MAX_ITER; i; --i) { + con = this.e * Math.sin(phi); + cl = Math.sqrt(1 - con * con) * Math.tan(phi); + mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi); + mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi); + ma = mln / this.a; + dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp); + phi -= dphi; + if (Math.abs(dphi) <= EPSLN) { + lat = phi; + break; + } + } + + //lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0); + cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat); + lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat)); + } + } + + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["Polyconic", "poly"]; +},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/gN":11,"../common/mlfn":14}],58:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var adjust_lat = _dereq_('../common/adjust_lat'); +var pj_enfn = _dereq_('../common/pj_enfn'); +var MAX_ITER = 20; +var pj_mlfn = _dereq_('../common/pj_mlfn'); +var pj_inv_mlfn = _dereq_('../common/pj_inv_mlfn'); +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +var asinz = _dereq_('../common/asinz'); +exports.init = function() { + /* Place parameters in static storage for common use + -------------------------------------------------*/ + + + if (!this.sphere) { + this.en = pj_enfn(this.es); + } + else { + this.n = 1; + this.m = 0; + this.es = 0; + this.C_y = Math.sqrt((this.m + 1) / this.n); + this.C_x = this.C_y / (this.m + 1); + } + +}; + +/* Sinusoidal forward equations--mapping lat,long to x,y + -----------------------------------------------------*/ +exports.forward = function(p) { + var x, y; + var lon = p.x; + var lat = p.y; + /* Forward equations + -----------------*/ + lon = adjust_lon(lon - this.long0); + + if (this.sphere) { + if (!this.m) { + lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat; + } + else { + var k = this.n * Math.sin(lat); + for (var i = MAX_ITER; i; --i) { + var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat)); + lat -= V; + if (Math.abs(V) < EPSLN) { + break; + } + } + } + x = this.a * this.C_x * lon * (this.m + Math.cos(lat)); + y = this.a * this.C_y * lat; + + } + else { + + var s = Math.sin(lat); + var c = Math.cos(lat); + y = this.a * pj_mlfn(lat, s, c, this.en); + x = this.a * lon * c / Math.sqrt(1 - this.es * s * s); + } + + p.x = x; + p.y = y; + return p; +}; + +exports.inverse = function(p) { + var lat, temp, lon, s; + + p.x -= this.x0; + lon = p.x / this.a; + p.y -= this.y0; + lat = p.y / this.a; + + if (this.sphere) { + lat /= this.C_y; + lon = lon / (this.C_x * (this.m + Math.cos(lat))); + if (this.m) { + lat = asinz((this.m * lat + Math.sin(lat)) / this.n); + } + else if (this.n !== 1) { + lat = asinz(Math.sin(lat) / this.n); + } + lon = adjust_lon(lon + this.long0); + lat = adjust_lat(lat); + } + else { + lat = pj_inv_mlfn(p.y / this.a, this.es, this.en); + s = Math.abs(lat); + if (s < HALF_PI) { + s = Math.sin(lat); + temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat)); + //temp = this.long0 + p.x / (this.a * Math.cos(lat)); + lon = adjust_lon(temp); + } + else if ((s - EPSLN) < HALF_PI) { + lon = this.long0; + } + } + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["Sinusoidal", "sinu"]; +},{"../common/adjust_lat":4,"../common/adjust_lon":5,"../common/asinz":6,"../common/pj_enfn":17,"../common/pj_inv_mlfn":18,"../common/pj_mlfn":19}],59:[function(_dereq_,module,exports){ +/* + references: + Formules et constantes pour le Calcul pour la + projection cylindrique conforme à axe oblique et pour la transformation entre + des systèmes de référence. + http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf + */ +exports.init = function() { + var phy0 = this.lat0; + this.lambda0 = this.long0; + var sinPhy0 = Math.sin(phy0); + var semiMajorAxis = this.a; + var invF = this.rf; + var flattening = 1 / invF; + var e2 = 2 * flattening - Math.pow(flattening, 2); + var e = this.e = Math.sqrt(e2); + this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2)); + this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4)); + this.b0 = Math.asin(sinPhy0 / this.alpha); + var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2)); + var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2)); + var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0)); + this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3; +}; + + +exports.forward = function(p) { + var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2)); + var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y))); + var S = -this.alpha * (Sa1 + Sa2) + this.K; + + // spheric latitude + var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4); + + // spheric longitude + var I = this.alpha * (p.x - this.lambda0); + + // psoeudo equatorial rotation + var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I))); + + var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I)); + + p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0; + p.x = this.R * rotI + this.x0; + return p; +}; + +exports.inverse = function(p) { + var Y = p.x - this.x0; + var X = p.y - this.y0; + + var rotI = Y / this.R; + var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4); + + var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI)); + var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB))); + + var lambda = this.lambda0 + I / this.alpha; + + var S = 0; + var phy = b; + var prevPhy = -1000; + var iteration = 0; + while (Math.abs(phy - prevPhy) > 0.0000001) { + if (++iteration > 20) { + //...reportError("omercFwdInfinity"); + return; + } + //S = Math.log(Math.tan(Math.PI / 4 + phy / 2)); + S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2)); + prevPhy = phy; + phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2; + } + + p.x = lambda; + p.y = phy; + return p; +}; + +exports.names = ["somerc"]; + +},{}],60:[function(_dereq_,module,exports){ +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +var sign = _dereq_('../common/sign'); +var msfnz = _dereq_('../common/msfnz'); +var tsfnz = _dereq_('../common/tsfnz'); +var phi2z = _dereq_('../common/phi2z'); +var adjust_lon = _dereq_('../common/adjust_lon'); +exports.ssfn_ = function(phit, sinphi, eccen) { + sinphi *= eccen; + return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen)); +}; + +exports.init = function() { + this.coslat0 = Math.cos(this.lat0); + this.sinlat0 = Math.sin(this.lat0); + if (this.sphere) { + if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) { + this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts)); + } + } + else { + if (Math.abs(this.coslat0) <= EPSLN) { + if (this.lat0 > 0) { + //North pole + //trace('stere:north pole'); + this.con = 1; + } + else { + //South pole + //trace('stere:south pole'); + this.con = -1; + } + } + this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e)); + if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) { + this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts)); + } + this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0); + this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI; + this.cosX0 = Math.cos(this.X0); + this.sinX0 = Math.sin(this.X0); + } +}; + +// Stereographic forward equations--mapping lat,long to x,y +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + var sinlat = Math.sin(lat); + var coslat = Math.cos(lat); + var A, X, sinX, cosX, ts, rh; + var dlon = adjust_lon(lon - this.long0); + + if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) { + //case of the origine point + //trace('stere:this is the origin point'); + p.x = NaN; + p.y = NaN; + return p; + } + if (this.sphere) { + //trace('stere:sphere case'); + A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon)); + p.x = this.a * A * coslat * Math.sin(dlon) + this.x0; + p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0; + return p; + } + else { + X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI; + cosX = Math.cos(X); + sinX = Math.sin(X); + if (Math.abs(this.coslat0) <= EPSLN) { + ts = tsfnz(this.e, lat * this.con, this.con * sinlat); + rh = 2 * this.a * this.k0 * ts / this.cons; + p.x = this.x0 + rh * Math.sin(lon - this.long0); + p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0); + //trace(p.toString()); + return p; + } + else if (Math.abs(this.sinlat0) < EPSLN) { + //Eq + //trace('stere:equateur'); + A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon)); + p.y = A * sinX; + } + else { + //other case + //trace('stere:normal case'); + A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon))); + p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0; + } + p.x = A * cosX * Math.sin(dlon) + this.x0; + } + //trace(p.toString()); + return p; +}; + + +//* Stereographic inverse equations--mapping x,y to lat/long +exports.inverse = function(p) { + p.x -= this.x0; + p.y -= this.y0; + var lon, lat, ts, ce, Chi; + var rh = Math.sqrt(p.x * p.x + p.y * p.y); + if (this.sphere) { + var c = 2 * Math.atan(rh / (0.5 * this.a * this.k0)); + lon = this.long0; + lat = this.lat0; + if (rh <= EPSLN) { + p.x = lon; + p.y = lat; + return p; + } + lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh); + if (Math.abs(this.coslat0) < EPSLN) { + if (this.lat0 > 0) { + lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y)); + } + else { + lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y)); + } + } + else { + lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c))); + } + p.x = lon; + p.y = lat; + return p; + } + else { + if (Math.abs(this.coslat0) <= EPSLN) { + if (rh <= EPSLN) { + lat = this.lat0; + lon = this.long0; + p.x = lon; + p.y = lat; + //trace(p.toString()); + return p; + } + p.x *= this.con; + p.y *= this.con; + ts = rh * this.cons / (2 * this.a * this.k0); + lat = this.con * phi2z(this.e, ts); + lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y)); + } + else { + ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1)); + lon = this.long0; + if (rh <= EPSLN) { + Chi = this.X0; + } + else { + Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh); + lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce))); + } + lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi))); + } + } + p.x = lon; + p.y = lat; + + //trace(p.toString()); + return p; + +}; +exports.names = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"]; + +},{"../common/adjust_lon":5,"../common/msfnz":15,"../common/phi2z":16,"../common/sign":21,"../common/tsfnz":24}],61:[function(_dereq_,module,exports){ +var gauss = _dereq_('./gauss'); +var adjust_lon = _dereq_('../common/adjust_lon'); +exports.init = function() { + gauss.init.apply(this); + if (!this.rc) { + return; + } + this.sinc0 = Math.sin(this.phic0); + this.cosc0 = Math.cos(this.phic0); + this.R2 = 2 * this.rc; + if (!this.title) { + this.title = "Oblique Stereographic Alternative"; + } +}; + +exports.forward = function(p) { + var sinc, cosc, cosl, k; + p.x = adjust_lon(p.x - this.long0); + gauss.forward.apply(this, [p]); + sinc = Math.sin(p.y); + cosc = Math.cos(p.y); + cosl = Math.cos(p.x); + k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl); + p.x = k * cosc * Math.sin(p.x); + p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl); + p.x = this.a * p.x + this.x0; + p.y = this.a * p.y + this.y0; + return p; +}; + +exports.inverse = function(p) { + var sinc, cosc, lon, lat, rho; + p.x = (p.x - this.x0) / this.a; + p.y = (p.y - this.y0) / this.a; + + p.x /= this.k0; + p.y /= this.k0; + if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) { + var c = 2 * Math.atan2(rho, this.R2); + sinc = Math.sin(c); + cosc = Math.cos(c); + lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho); + lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc); + } + else { + lat = this.phic0; + lon = 0; + } + + p.x = lon; + p.y = lat; + gauss.inverse.apply(this, [p]); + p.x = adjust_lon(p.x + this.long0); + return p; +}; + +exports.names = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative"]; + +},{"../common/adjust_lon":5,"./gauss":46}],62:[function(_dereq_,module,exports){ +var e0fn = _dereq_('../common/e0fn'); +var e1fn = _dereq_('../common/e1fn'); +var e2fn = _dereq_('../common/e2fn'); +var e3fn = _dereq_('../common/e3fn'); +var mlfn = _dereq_('../common/mlfn'); +var adjust_lon = _dereq_('../common/adjust_lon'); +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +var sign = _dereq_('../common/sign'); +var asinz = _dereq_('../common/asinz'); + +exports.init = function() { + this.e0 = e0fn(this.es); + this.e1 = e1fn(this.es); + this.e2 = e2fn(this.es); + this.e3 = e3fn(this.es); + this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); +}; + +/** + Transverse Mercator Forward - long/lat to x/y + long/lat in radians + */ +exports.forward = function(p) { + var lon = p.x; + var lat = p.y; + + var delta_lon = adjust_lon(lon - this.long0); + var con; + var x, y; + var sin_phi = Math.sin(lat); + var cos_phi = Math.cos(lat); + + if (this.sphere) { + var b = cos_phi * Math.sin(delta_lon); + if ((Math.abs(Math.abs(b) - 1)) < 0.0000000001) { + return (93); + } + else { + x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)); + con = Math.acos(cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - b * b)); + if (lat < 0) { + con = -con; + } + y = this.a * this.k0 * (con - this.lat0); + } + } + else { + var al = cos_phi * delta_lon; + var als = Math.pow(al, 2); + var c = this.ep2 * Math.pow(cos_phi, 2); + var tq = Math.tan(lat); + var t = Math.pow(tq, 2); + con = 1 - this.es * Math.pow(sin_phi, 2); + var n = this.a / Math.sqrt(con); + var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat); + + x = this.k0 * n * al * (1 + als / 6 * (1 - t + c + als / 20 * (5 - 18 * t + Math.pow(t, 2) + 72 * c - 58 * this.ep2))) + this.x0; + y = this.k0 * (ml - this.ml0 + n * tq * (als * (0.5 + als / 24 * (5 - t + 9 * c + 4 * Math.pow(c, 2) + als / 30 * (61 - 58 * t + Math.pow(t, 2) + 600 * c - 330 * this.ep2))))) + this.y0; + + } + p.x = x; + p.y = y; + return p; +}; + +/** + Transverse Mercator Inverse - x/y to long/lat + */ +exports.inverse = function(p) { + var con, phi; + var delta_phi; + var i; + var max_iter = 6; + var lat, lon; + + if (this.sphere) { + var f = Math.exp(p.x / (this.a * this.k0)); + var g = 0.5 * (f - 1 / f); + var temp = this.lat0 + p.y / (this.a * this.k0); + var h = Math.cos(temp); + con = Math.sqrt((1 - h * h) / (1 + g * g)); + lat = asinz(con); + if (temp < 0) { + lat = -lat; + } + if ((g === 0) && (h === 0)) { + lon = this.long0; + } + else { + lon = adjust_lon(Math.atan2(g, h) + this.long0); + } + } + else { // ellipsoidal form + var x = p.x - this.x0; + var y = p.y - this.y0; + + con = (this.ml0 + y / this.k0) / this.a; + phi = con; + for (i = 0; true; i++) { + delta_phi = ((con + this.e1 * Math.sin(2 * phi) - this.e2 * Math.sin(4 * phi) + this.e3 * Math.sin(6 * phi)) / this.e0) - phi; + phi += delta_phi; + if (Math.abs(delta_phi) <= EPSLN) { + break; + } + if (i >= max_iter) { + return (95); + } + } // for() + if (Math.abs(phi) < HALF_PI) { + var sin_phi = Math.sin(phi); + var cos_phi = Math.cos(phi); + var tan_phi = Math.tan(phi); + var c = this.ep2 * Math.pow(cos_phi, 2); + var cs = Math.pow(c, 2); + var t = Math.pow(tan_phi, 2); + var ts = Math.pow(t, 2); + con = 1 - this.es * Math.pow(sin_phi, 2); + var n = this.a / Math.sqrt(con); + var r = n * (1 - this.es) / con; + var d = x / (n * this.k0); + var ds = Math.pow(d, 2); + lat = phi - (n * tan_phi * ds / r) * (0.5 - ds / 24 * (5 + 3 * t + 10 * c - 4 * cs - 9 * this.ep2 - ds / 30 * (61 + 90 * t + 298 * c + 45 * ts - 252 * this.ep2 - 3 * cs))); + lon = adjust_lon(this.long0 + (d * (1 - ds / 6 * (1 + 2 * t + c - ds / 20 * (5 - 2 * c + 28 * t - 3 * cs + 8 * this.ep2 + 24 * ts))) / cos_phi)); + } + else { + lat = HALF_PI * sign(y); + lon = this.long0; + } + } + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["Transverse_Mercator", "Transverse Mercator", "tmerc"]; + +},{"../common/adjust_lon":5,"../common/asinz":6,"../common/e0fn":7,"../common/e1fn":8,"../common/e2fn":9,"../common/e3fn":10,"../common/mlfn":14,"../common/sign":21}],63:[function(_dereq_,module,exports){ +var D2R = 0.01745329251994329577; +var tmerc = _dereq_('./tmerc'); +exports.dependsOn = 'tmerc'; +exports.init = function() { + if (!this.zone) { + return; + } + this.lat0 = 0; + this.long0 = ((6 * Math.abs(this.zone)) - 183) * D2R; + this.x0 = 500000; + this.y0 = this.utmSouth ? 10000000 : 0; + this.k0 = 0.9996; + + tmerc.init.apply(this); + this.forward = tmerc.forward; + this.inverse = tmerc.inverse; +}; +exports.names = ["Universal Transverse Mercator System", "utm"]; + +},{"./tmerc":62}],64:[function(_dereq_,module,exports){ +var adjust_lon = _dereq_('../common/adjust_lon'); +var HALF_PI = Math.PI/2; +var EPSLN = 1.0e-10; +var asinz = _dereq_('../common/asinz'); +/* Initialize the Van Der Grinten projection + ----------------------------------------*/ +exports.init = function() { + //this.R = 6370997; //Radius of earth + this.R = this.a; +}; + +exports.forward = function(p) { + + var lon = p.x; + var lat = p.y; + + /* Forward equations + -----------------*/ + var dlon = adjust_lon(lon - this.long0); + var x, y; + + if (Math.abs(lat) <= EPSLN) { + x = this.x0 + this.R * dlon; + y = this.y0; + } + var theta = asinz(2 * Math.abs(lat / Math.PI)); + if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) { + x = this.x0; + if (lat >= 0) { + y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta); + } + else { + y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta); + } + // return(OK); + } + var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI)); + var asq = al * al; + var sinth = Math.sin(theta); + var costh = Math.cos(theta); + + var g = costh / (sinth + costh - 1); + var gsq = g * g; + var m = g * (2 / sinth - 1); + var msq = m * m; + var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq); + if (dlon < 0) { + con = -con; + } + x = this.x0 + con; + //con = Math.abs(con / (Math.PI * this.R)); + var q = asq + g; + con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq); + if (lat >= 0) { + //y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con); + y = this.y0 + con; + } + else { + //y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con); + y = this.y0 - con; + } + p.x = x; + p.y = y; + return p; +}; + +/* Van Der Grinten inverse equations--mapping x,y to lat/long + ---------------------------------------------------------*/ +exports.inverse = function(p) { + var lon, lat; + var xx, yy, xys, c1, c2, c3; + var a1; + var m1; + var con; + var th1; + var d; + + /* inverse equations + -----------------*/ + p.x -= this.x0; + p.y -= this.y0; + con = Math.PI * this.R; + xx = p.x / con; + yy = p.y / con; + xys = xx * xx + yy * yy; + c1 = -Math.abs(yy) * (1 + xys); + c2 = c1 - 2 * yy * yy + xx * xx; + c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys; + d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27; + a1 = (c1 - c2 * c2 / 3 / c3) / c3; + m1 = 2 * Math.sqrt(-a1 / 3); + con = ((3 * d) / a1) / m1; + if (Math.abs(con) > 1) { + if (con >= 0) { + con = 1; + } + else { + con = -1; + } + } + th1 = Math.acos(con) / 3; + if (p.y >= 0) { + lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI; + } + else { + lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI; + } + + if (Math.abs(xx) < EPSLN) { + lon = this.long0; + } + else { + lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx); + } + + p.x = lon; + p.y = lat; + return p; +}; +exports.names = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"]; +},{"../common/adjust_lon":5,"../common/asinz":6}],65:[function(_dereq_,module,exports){ +var D2R = 0.01745329251994329577; +var R2D = 57.29577951308232088; +var PJD_3PARAM = 1; +var PJD_7PARAM = 2; +var datum_transform = _dereq_('./datum_transform'); +var adjust_axis = _dereq_('./adjust_axis'); +var proj = _dereq_('./Proj'); +var toPoint = _dereq_('./common/toPoint'); +module.exports = function transform(source, dest, point) { + var wgs84; + if (Array.isArray(point)) { + point = toPoint(point); + } + function checkNotWGS(source, dest) { + return ((source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM) && dest.datumCode !== "WGS84"); + } + + // Workaround for datum shifts towgs84, if either source or destination projection is not wgs84 + if (source.datum && dest.datum && (checkNotWGS(source, dest) || checkNotWGS(dest, source))) { + wgs84 = new proj('WGS84'); + transform(source, wgs84, point); + source = wgs84; + } + // DGR, 2010/11/12 + if (source.axis !== "enu") { + adjust_axis(source, false, point); + } + // Transform source points to long/lat, if they aren't already. + if (source.projName === "longlat") { + point.x *= D2R; // convert degrees to radians + point.y *= D2R; + } + else { + if (source.to_meter) { + point.x *= source.to_meter; + point.y *= source.to_meter; + } + source.inverse(point); // Convert Cartesian to longlat + } + // Adjust for the prime meridian if necessary + if (source.from_greenwich) { + point.x += source.from_greenwich; + } + + // Convert datums if needed, and if possible. + point = datum_transform(source.datum, dest.datum, point); + + // Adjust for the prime meridian if necessary + if (dest.from_greenwich) { + point.x -= dest.from_greenwich; + } + + if (dest.projName === "longlat") { + // convert radians to decimal degrees + point.x *= R2D; + point.y *= R2D; + } + else { // else project + dest.forward(point); + if (dest.to_meter) { + point.x /= dest.to_meter; + point.y /= dest.to_meter; + } + } + + // DGR, 2010/11/12 + if (dest.axis !== "enu") { + adjust_axis(dest, true, point); + } + + return point; +}; +},{"./Proj":2,"./adjust_axis":3,"./common/toPoint":23,"./datum_transform":31}],66:[function(_dereq_,module,exports){ +var D2R = 0.01745329251994329577; +var extend = _dereq_('./extend'); + +function mapit(obj, key, v) { + obj[key] = v.map(function(aa) { + var o = {}; + sExpr(aa, o); + return o; + }).reduce(function(a, b) { + return extend(a, b); + }, {}); +} + +function sExpr(v, obj) { + var key; + if (!Array.isArray(v)) { + obj[v] = true; + return; + } + else { + key = v.shift(); + if (key === 'PARAMETER') { + key = v.shift(); + } + if (v.length === 1) { + if (Array.isArray(v[0])) { + obj[key] = {}; + sExpr(v[0], obj[key]); + } + else { + obj[key] = v[0]; + } + } + else if (!v.length) { + obj[key] = true; + } + else if (key === 'TOWGS84') { + obj[key] = v; + } + else { + obj[key] = {}; + if (['UNIT', 'PRIMEM', 'VERT_DATUM'].indexOf(key) > -1) { + obj[key] = { + name: v[0].toLowerCase(), + convert: v[1] + }; + if (v.length === 3) { + obj[key].auth = v[2]; + } + } + else if (key === 'SPHEROID') { + obj[key] = { + name: v[0], + a: v[1], + rf: v[2] + }; + if (v.length === 4) { + obj[key].auth = v[3]; + } + } + else if (['GEOGCS', 'GEOCCS', 'DATUM', 'VERT_CS', 'COMPD_CS', 'LOCAL_CS', 'FITTED_CS', 'LOCAL_DATUM'].indexOf(key) > -1) { + v[0] = ['name', v[0]]; + mapit(obj, key, v); + } + else if (v.every(function(aa) { + return Array.isArray(aa); + })) { + mapit(obj, key, v); + } + else { + sExpr(v, obj[key]); + } + } + } +} + +function rename(obj, params) { + var outName = params[0]; + var inName = params[1]; + if (!(outName in obj) && (inName in obj)) { + obj[outName] = obj[inName]; + if (params.length === 3) { + obj[outName] = params[2](obj[outName]); + } + } +} + +function d2r(input) { + return input * D2R; +} + +function cleanWKT(wkt) { + if (wkt.type === 'GEOGCS') { + wkt.projName = 'longlat'; + } + else if (wkt.type === 'LOCAL_CS') { + wkt.projName = 'identity'; + wkt.local = true; + } + else { + if (typeof wkt.PROJECTION === "object") { + wkt.projName = Object.keys(wkt.PROJECTION)[0]; + } + else { + wkt.projName = wkt.PROJECTION; + } + } + if (wkt.UNIT) { + wkt.units = wkt.UNIT.name.toLowerCase(); + if (wkt.units === 'metre') { + wkt.units = 'meter'; + } + if (wkt.UNIT.convert) { + if (wkt.type === 'GEOGCS') { + if (wkt.DATUM && wkt.DATUM.SPHEROID) { + wkt.to_meter = parseFloat(wkt.UNIT.convert, 10)*wkt.DATUM.SPHEROID.a; + } + } else { + wkt.to_meter = parseFloat(wkt.UNIT.convert, 10); + } + } + } + + if (wkt.GEOGCS) { + //if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){ + // wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R; + //} + if (wkt.GEOGCS.DATUM) { + wkt.datumCode = wkt.GEOGCS.DATUM.name.toLowerCase(); + } + else { + wkt.datumCode = wkt.GEOGCS.name.toLowerCase(); + } + if (wkt.datumCode.slice(0, 2) === 'd_') { + wkt.datumCode = wkt.datumCode.slice(2); + } + if (wkt.datumCode === 'new_zealand_geodetic_datum_1949' || wkt.datumCode === 'new_zealand_1949') { + wkt.datumCode = 'nzgd49'; + } + if (wkt.datumCode === "wgs_1984") { + if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') { + wkt.sphere = true; + } + wkt.datumCode = 'wgs84'; + } + if (wkt.datumCode.slice(-6) === '_ferro') { + wkt.datumCode = wkt.datumCode.slice(0, - 6); + } + if (wkt.datumCode.slice(-8) === '_jakarta') { + wkt.datumCode = wkt.datumCode.slice(0, - 8); + } + if (~wkt.datumCode.indexOf('belge')) { + wkt.datumCode = "rnb72"; + } + if (wkt.GEOGCS.DATUM && wkt.GEOGCS.DATUM.SPHEROID) { + wkt.ellps = wkt.GEOGCS.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk'); + if (wkt.ellps.toLowerCase().slice(0, 13) === "international") { + wkt.ellps = 'intl'; + } + + wkt.a = wkt.GEOGCS.DATUM.SPHEROID.a; + wkt.rf = parseFloat(wkt.GEOGCS.DATUM.SPHEROID.rf, 10); + } + if (~wkt.datumCode.indexOf('osgb_1936')) { + wkt.datumCode = "osgb36"; + } + } + if (wkt.b && !isFinite(wkt.b)) { + wkt.b = wkt.a; + } + + function toMeter(input) { + var ratio = wkt.to_meter || 1; + return parseFloat(input, 10) * ratio; + } + var renamer = function(a) { + return rename(wkt, a); + }; + var list = [ + ['standard_parallel_1', 'Standard_Parallel_1'], + ['standard_parallel_2', 'Standard_Parallel_2'], + ['false_easting', 'False_Easting'], + ['false_northing', 'False_Northing'], + ['central_meridian', 'Central_Meridian'], + ['latitude_of_origin', 'Latitude_Of_Origin'], + ['latitude_of_origin', 'Central_Parallel'], + ['scale_factor', 'Scale_Factor'], + ['k0', 'scale_factor'], + ['latitude_of_center', 'Latitude_of_center'], + ['lat0', 'latitude_of_center', d2r], + ['longitude_of_center', 'Longitude_Of_Center'], + ['longc', 'longitude_of_center', d2r], + ['x0', 'false_easting', toMeter], + ['y0', 'false_northing', toMeter], + ['long0', 'central_meridian', d2r], + ['lat0', 'latitude_of_origin', d2r], + ['lat0', 'standard_parallel_1', d2r], + ['lat1', 'standard_parallel_1', d2r], + ['lat2', 'standard_parallel_2', d2r], + ['alpha', 'azimuth', d2r], + ['srsCode', 'name'] + ]; + list.forEach(renamer); + if (!wkt.long0 && wkt.longc && (wkt.projName === 'Albers_Conic_Equal_Area' || wkt.projName === "Lambert_Azimuthal_Equal_Area")) { + wkt.long0 = wkt.longc; + } + if (!wkt.lat_ts && wkt.lat1 && (wkt.projName === 'Stereographic_South_Pole' || wkt.projName === 'Polar Stereographic (variant B)')) { + wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90); + wkt.lat_ts = wkt.lat1; + } +} +module.exports = function(wkt, self) { + var lisp = JSON.parse(("," + wkt).replace(/\s*\,\s*([A-Z_0-9]+?)(\[)/g, ',["$1",').slice(1).replace(/\s*\,\s*([A-Z_0-9]+?)\]/g, ',"$1"]').replace(/,\["VERTCS".+/,'')); + var type = lisp.shift(); + var name = lisp.shift(); + lisp.unshift(['name', name]); + lisp.unshift(['type', type]); + lisp.unshift('output'); + var obj = {}; + sExpr(lisp, obj); + cleanWKT(obj.output); + return extend(self, obj.output); +}; + +},{"./extend":34}],67:[function(_dereq_,module,exports){ + + + +/** + * UTM zones are grouped, and assigned to one of a group of 6 + * sets. + * + * {int} @private + */ +var NUM_100K_SETS = 6; + +/** + * The column letters (for easting) of the lower left value, per + * set. + * + * {string} @private + */ +var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS'; + +/** + * The row letters (for northing) of the lower left value, per + * set. + * + * {string} @private + */ +var SET_ORIGIN_ROW_LETTERS = 'AFAFAF'; + +var A = 65; // A +var I = 73; // I +var O = 79; // O +var V = 86; // V +var Z = 90; // Z + +/** + * Conversion of lat/lon to MGRS. + * + * @param {object} ll Object literal with lat and lon properties on a + * WGS84 ellipsoid. + * @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for + * 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5. + * @return {string} the MGRS string for the given location and accuracy. + */ +exports.forward = function(ll, accuracy) { + accuracy = accuracy || 5; // default accuracy 1m + return encode(LLtoUTM({ + lat: ll[1], + lon: ll[0] + }), accuracy); +}; + +/** + * Conversion of MGRS to lat/lon. + * + * @param {string} mgrs MGRS string. + * @return {array} An array with left (longitude), bottom (latitude), right + * (longitude) and top (latitude) values in WGS84, representing the + * bounding box for the provided MGRS reference. + */ +exports.inverse = function(mgrs) { + var bbox = UTMtoLL(decode(mgrs.toUpperCase())); + if (bbox.lat && bbox.lon) { + return [bbox.lon, bbox.lat, bbox.lon, bbox.lat]; + } + return [bbox.left, bbox.bottom, bbox.right, bbox.top]; +}; + +exports.toPoint = function(mgrs) { + var bbox = UTMtoLL(decode(mgrs.toUpperCase())); + if (bbox.lat && bbox.lon) { + return [bbox.lon, bbox.lat]; + } + return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2]; +}; +/** + * Conversion from degrees to radians. + * + * @private + * @param {number} deg the angle in degrees. + * @return {number} the angle in radians. + */ +function degToRad(deg) { + return (deg * (Math.PI / 180.0)); +} + +/** + * Conversion from radians to degrees. + * + * @private + * @param {number} rad the angle in radians. + * @return {number} the angle in degrees. + */ +function radToDeg(rad) { + return (180.0 * (rad / Math.PI)); +} + +/** + * Converts a set of Longitude and Latitude co-ordinates to UTM + * using the WGS84 ellipsoid. + * + * @private + * @param {object} ll Object literal with lat and lon properties + * representing the WGS84 coordinate to be converted. + * @return {object} Object literal containing the UTM value with easting, + * northing, zoneNumber and zoneLetter properties, and an optional + * accuracy property in digits. Returns null if the conversion failed. + */ +function LLtoUTM(ll) { + var Lat = ll.lat; + var Long = ll.lon; + var a = 6378137.0; //ellip.radius; + var eccSquared = 0.00669438; //ellip.eccsq; + var k0 = 0.9996; + var LongOrigin; + var eccPrimeSquared; + var N, T, C, A, M; + var LatRad = degToRad(Lat); + var LongRad = degToRad(Long); + var LongOriginRad; + var ZoneNumber; + // (int) + ZoneNumber = Math.floor((Long + 180) / 6) + 1; + + //Make sure the longitude 180.00 is in Zone 60 + if (Long === 180) { + ZoneNumber = 60; + } + + // Special zone for Norway + if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) { + ZoneNumber = 32; + } + + // Special zones for Svalbard + if (Lat >= 72.0 && Lat < 84.0) { + if (Long >= 0.0 && Long < 9.0) { + ZoneNumber = 31; + } + else if (Long >= 9.0 && Long < 21.0) { + ZoneNumber = 33; + } + else if (Long >= 21.0 && Long < 33.0) { + ZoneNumber = 35; + } + else if (Long >= 33.0 && Long < 42.0) { + ZoneNumber = 37; + } + } + + LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin + // in middle of + // zone + LongOriginRad = degToRad(LongOrigin); + + eccPrimeSquared = (eccSquared) / (1 - eccSquared); + + N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad)); + T = Math.tan(LatRad) * Math.tan(LatRad); + C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad); + A = Math.cos(LatRad) * (LongRad - LongOriginRad); + + M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad)); + + var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0); + + var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0))); + if (Lat < 0.0) { + UTMNorthing += 10000000.0; //10000000 meter offset for + // southern hemisphere + } + + return { + northing: Math.round(UTMNorthing), + easting: Math.round(UTMEasting), + zoneNumber: ZoneNumber, + zoneLetter: getLetterDesignator(Lat) + }; +} + +/** + * Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience + * class where the Zone can be specified as a single string eg."60N" which + * is then broken down into the ZoneNumber and ZoneLetter. + * + * @private + * @param {object} utm An object literal with northing, easting, zoneNumber + * and zoneLetter properties. If an optional accuracy property is + * provided (in meters), a bounding box will be returned instead of + * latitude and longitude. + * @return {object} An object literal containing either lat and lon values + * (if no accuracy was provided), or top, right, bottom and left values + * for the bounding box calculated according to the provided accuracy. + * Returns null if the conversion failed. + */ +function UTMtoLL(utm) { + + var UTMNorthing = utm.northing; + var UTMEasting = utm.easting; + var zoneLetter = utm.zoneLetter; + var zoneNumber = utm.zoneNumber; + // check the ZoneNummber is valid + if (zoneNumber < 0 || zoneNumber > 60) { + return null; + } + + var k0 = 0.9996; + var a = 6378137.0; //ellip.radius; + var eccSquared = 0.00669438; //ellip.eccsq; + var eccPrimeSquared; + var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared)); + var N1, T1, C1, R1, D, M; + var LongOrigin; + var mu, phi1Rad; + + // remove 500,000 meter offset for longitude + var x = UTMEasting - 500000.0; + var y = UTMNorthing; + + // We must know somehow if we are in the Northern or Southern + // hemisphere, this is the only time we use the letter So even + // if the Zone letter isn't exactly correct it should indicate + // the hemisphere correctly + if (zoneLetter < 'N') { + y -= 10000000.0; // remove 10,000,000 meter offset used + // for southern hemisphere + } + + // There are 60 zones with zone 1 being at West -180 to -174 + LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin + // in middle of + // zone + + eccPrimeSquared = (eccSquared) / (1 - eccSquared); + + M = y / k0; + mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256)); + + phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu); + // double phi1 = ProjMath.radToDeg(phi1Rad); + + N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad)); + T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad); + C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad); + R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5); + D = x / (N1 * k0); + + var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720); + lat = radToDeg(lat); + + var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad); + lon = LongOrigin + radToDeg(lon); + + var result; + if (utm.accuracy) { + var topRight = UTMtoLL({ + northing: utm.northing + utm.accuracy, + easting: utm.easting + utm.accuracy, + zoneLetter: utm.zoneLetter, + zoneNumber: utm.zoneNumber + }); + result = { + top: topRight.lat, + right: topRight.lon, + bottom: lat, + left: lon + }; + } + else { + result = { + lat: lat, + lon: lon + }; + } + return result; +} + +/** + * Calculates the MGRS letter designator for the given latitude. + * + * @private + * @param {number} lat The latitude in WGS84 to get the letter designator + * for. + * @return {char} The letter designator. + */ +function getLetterDesignator(lat) { + //This is here as an error flag to show that the Latitude is + //outside MGRS limits + var LetterDesignator = 'Z'; + + if ((84 >= lat) && (lat >= 72)) { + LetterDesignator = 'X'; + } + else if ((72 > lat) && (lat >= 64)) { + LetterDesignator = 'W'; + } + else if ((64 > lat) && (lat >= 56)) { + LetterDesignator = 'V'; + } + else if ((56 > lat) && (lat >= 48)) { + LetterDesignator = 'U'; + } + else if ((48 > lat) && (lat >= 40)) { + LetterDesignator = 'T'; + } + else if ((40 > lat) && (lat >= 32)) { + LetterDesignator = 'S'; + } + else if ((32 > lat) && (lat >= 24)) { + LetterDesignator = 'R'; + } + else if ((24 > lat) && (lat >= 16)) { + LetterDesignator = 'Q'; + } + else if ((16 > lat) && (lat >= 8)) { + LetterDesignator = 'P'; + } + else if ((8 > lat) && (lat >= 0)) { + LetterDesignator = 'N'; + } + else if ((0 > lat) && (lat >= -8)) { + LetterDesignator = 'M'; + } + else if ((-8 > lat) && (lat >= -16)) { + LetterDesignator = 'L'; + } + else if ((-16 > lat) && (lat >= -24)) { + LetterDesignator = 'K'; + } + else if ((-24 > lat) && (lat >= -32)) { + LetterDesignator = 'J'; + } + else if ((-32 > lat) && (lat >= -40)) { + LetterDesignator = 'H'; + } + else if ((-40 > lat) && (lat >= -48)) { + LetterDesignator = 'G'; + } + else if ((-48 > lat) && (lat >= -56)) { + LetterDesignator = 'F'; + } + else if ((-56 > lat) && (lat >= -64)) { + LetterDesignator = 'E'; + } + else if ((-64 > lat) && (lat >= -72)) { + LetterDesignator = 'D'; + } + else if ((-72 > lat) && (lat >= -80)) { + LetterDesignator = 'C'; + } + return LetterDesignator; +} + +/** + * Encodes a UTM location as MGRS string. + * + * @private + * @param {object} utm An object literal with easting, northing, + * zoneLetter, zoneNumber + * @param {number} accuracy Accuracy in digits (1-5). + * @return {string} MGRS string for the given UTM location. + */ +function encode(utm, accuracy) { + // prepend with leading zeroes + var seasting = "00000" + utm.easting, + snorthing = "00000" + utm.northing; + + return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy); +} + +/** + * Get the two letter 100k designator for a given UTM easting, + * northing and zone number value. + * + * @private + * @param {number} easting + * @param {number} northing + * @param {number} zoneNumber + * @return the two letter 100k designator for the given UTM location. + */ +function get100kID(easting, northing, zoneNumber) { + var setParm = get100kSetForZone(zoneNumber); + var setColumn = Math.floor(easting / 100000); + var setRow = Math.floor(northing / 100000) % 20; + return getLetter100kID(setColumn, setRow, setParm); +} + +/** + * Given a UTM zone number, figure out the MGRS 100K set it is in. + * + * @private + * @param {number} i An UTM zone number. + * @return {number} the 100k set the UTM zone is in. + */ +function get100kSetForZone(i) { + var setParm = i % NUM_100K_SETS; + if (setParm === 0) { + setParm = NUM_100K_SETS; + } + + return setParm; +} + +/** + * Get the two-letter MGRS 100k designator given information + * translated from the UTM northing, easting and zone number. + * + * @private + * @param {number} column the column index as it relates to the MGRS + * 100k set spreadsheet, created from the UTM easting. + * Values are 1-8. + * @param {number} row the row index as it relates to the MGRS 100k set + * spreadsheet, created from the UTM northing value. Values + * are from 0-19. + * @param {number} parm the set block, as it relates to the MGRS 100k set + * spreadsheet, created from the UTM zone. Values are from + * 1-60. + * @return two letter MGRS 100k code. + */ +function getLetter100kID(column, row, parm) { + // colOrigin and rowOrigin are the letters at the origin of the set + var index = parm - 1; + var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index); + var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index); + + // colInt and rowInt are the letters to build to return + var colInt = colOrigin + column - 1; + var rowInt = rowOrigin + row; + var rollover = false; + + if (colInt > Z) { + colInt = colInt - Z + A - 1; + rollover = true; + } + + if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) { + colInt++; + } + + if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) { + colInt++; + + if (colInt === I) { + colInt++; + } + } + + if (colInt > Z) { + colInt = colInt - Z + A - 1; + } + + if (rowInt > V) { + rowInt = rowInt - V + A - 1; + rollover = true; + } + else { + rollover = false; + } + + if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) { + rowInt++; + } + + if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) { + rowInt++; + + if (rowInt === I) { + rowInt++; + } + } + + if (rowInt > V) { + rowInt = rowInt - V + A - 1; + } + + var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt); + return twoLetter; +} + +/** + * Decode the UTM parameters from a MGRS string. + * + * @private + * @param {string} mgrsString an UPPERCASE coordinate string is expected. + * @return {object} An object literal with easting, northing, zoneLetter, + * zoneNumber and accuracy (in meters) properties. + */ +function decode(mgrsString) { + + if (mgrsString && mgrsString.length === 0) { + throw ("MGRSPoint coverting from nothing"); + } + + var length = mgrsString.length; + + var hunK = null; + var sb = ""; + var testChar; + var i = 0; + + // get Zone number + while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) { + if (i >= 2) { + throw ("MGRSPoint bad conversion from: " + mgrsString); + } + sb += testChar; + i++; + } + + var zoneNumber = parseInt(sb, 10); + + if (i === 0 || i + 3 > length) { + // A good MGRS string has to be 4-5 digits long, + // ##AAA/#AAA at least. + throw ("MGRSPoint bad conversion from: " + mgrsString); + } + + var zoneLetter = mgrsString.charAt(i++); + + // Should we check the zone letter here? Why not. + if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') { + throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString); + } + + hunK = mgrsString.substring(i, i += 2); + + var set = get100kSetForZone(zoneNumber); + + var east100k = getEastingFromChar(hunK.charAt(0), set); + var north100k = getNorthingFromChar(hunK.charAt(1), set); + + // We have a bug where the northing may be 2000000 too low. + // How + // do we know when to roll over? + + while (north100k < getMinNorthing(zoneLetter)) { + north100k += 2000000; + } + + // calculate the char index for easting/northing separator + var remainder = length - i; + + if (remainder % 2 !== 0) { + throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString); + } + + var sep = remainder / 2; + + var sepEasting = 0.0; + var sepNorthing = 0.0; + var accuracyBonus, sepEastingString, sepNorthingString, easting, northing; + if (sep > 0) { + accuracyBonus = 100000.0 / Math.pow(10, sep); + sepEastingString = mgrsString.substring(i, i + sep); + sepEasting = parseFloat(sepEastingString) * accuracyBonus; + sepNorthingString = mgrsString.substring(i + sep); + sepNorthing = parseFloat(sepNorthingString) * accuracyBonus; + } + + easting = sepEasting + east100k; + northing = sepNorthing + north100k; + + return { + easting: easting, + northing: northing, + zoneLetter: zoneLetter, + zoneNumber: zoneNumber, + accuracy: accuracyBonus + }; +} + +/** + * Given the first letter from a two-letter MGRS 100k zone, and given the + * MGRS table set for the zone number, figure out the easting value that + * should be added to the other, secondary easting value. + * + * @private + * @param {char} e The first letter from a two-letter MGRS 100´k zone. + * @param {number} set The MGRS table set for the zone number. + * @return {number} The easting value for the given letter and set. + */ +function getEastingFromChar(e, set) { + // colOrigin is the letter at the origin of the set for the + // column + var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1); + var eastingValue = 100000.0; + var rewindMarker = false; + + while (curCol !== e.charCodeAt(0)) { + curCol++; + if (curCol === I) { + curCol++; + } + if (curCol === O) { + curCol++; + } + if (curCol > Z) { + if (rewindMarker) { + throw ("Bad character: " + e); + } + curCol = A; + rewindMarker = true; + } + eastingValue += 100000.0; + } + + return eastingValue; +} + +/** + * Given the second letter from a two-letter MGRS 100k zone, and given the + * MGRS table set for the zone number, figure out the northing value that + * should be added to the other, secondary northing value. You have to + * remember that Northings are determined from the equator, and the vertical + * cycle of letters mean a 2000000 additional northing meters. This happens + * approx. every 18 degrees of latitude. This method does *NOT* count any + * additional northings. You have to figure out how many 2000000 meters need + * to be added for the zone letter of the MGRS coordinate. + * + * @private + * @param {char} n Second letter of the MGRS 100k zone + * @param {number} set The MGRS table set number, which is dependent on the + * UTM zone number. + * @return {number} The northing value for the given letter and set. + */ +function getNorthingFromChar(n, set) { + + if (n > 'V') { + throw ("MGRSPoint given invalid Northing " + n); + } + + // rowOrigin is the letter at the origin of the set for the + // column + var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1); + var northingValue = 0.0; + var rewindMarker = false; + + while (curRow !== n.charCodeAt(0)) { + curRow++; + if (curRow === I) { + curRow++; + } + if (curRow === O) { + curRow++; + } + // fixing a bug making whole application hang in this loop + // when 'n' is a wrong character + if (curRow > V) { + if (rewindMarker) { // making sure that this loop ends + throw ("Bad character: " + n); + } + curRow = A; + rewindMarker = true; + } + northingValue += 100000.0; + } + + return northingValue; +} + +/** + * The function getMinNorthing returns the minimum northing value of a MGRS + * zone. + * + * Ported from Geotrans' c Lattitude_Band_Value structure table. + * + * @private + * @param {char} zoneLetter The MGRS zone to get the min northing for. + * @return {number} + */ +function getMinNorthing(zoneLetter) { + var northing; + switch (zoneLetter) { + case 'C': + northing = 1100000.0; + break; + case 'D': + northing = 2000000.0; + break; + case 'E': + northing = 2800000.0; + break; + case 'F': + northing = 3700000.0; + break; + case 'G': + northing = 4600000.0; + break; + case 'H': + northing = 5500000.0; + break; + case 'J': + northing = 6400000.0; + break; + case 'K': + northing = 7300000.0; + break; + case 'L': + northing = 8200000.0; + break; + case 'M': + northing = 9100000.0; + break; + case 'N': + northing = 0.0; + break; + case 'P': + northing = 800000.0; + break; + case 'Q': + northing = 1700000.0; + break; + case 'R': + northing = 2600000.0; + break; + case 'S': + northing = 3500000.0; + break; + case 'T': + northing = 4400000.0; + break; + case 'U': + northing = 5300000.0; + break; + case 'V': + northing = 6200000.0; + break; + case 'W': + northing = 7000000.0; + break; + case 'X': + northing = 7900000.0; + break; + default: + northing = -1.0; + } + if (northing >= 0.0) { + return northing; + } + else { + throw ("Invalid zone letter: " + zoneLetter); + } + +} + +},{}],68:[function(_dereq_,module,exports){ +module.exports={ + "name": "proj4", + "version": "2.3.14", + "description": "Proj4js is a JavaScript library to transform point coordinates from one coordinate system to another, including datum transformations.", + "main": "lib/index.js", + "directories": { + "test": "test", + "doc": "docs" + }, + "scripts": { + "test": "./node_modules/istanbul/lib/cli.js test ./node_modules/mocha/bin/_mocha test/test.js" + }, + "repository": { + "type": "git", + "url": "git://github.com/proj4js/proj4js.git" + }, + "author": "", + "license": "MIT", + "jam": { + "main": "dist/proj4.js", + "include": [ + "dist/proj4.js", + "README.md", + "AUTHORS", + "LICENSE.md" + ] + }, + "devDependencies": { + "grunt-cli": "~0.1.13", + "grunt": "~0.4.2", + "grunt-contrib-connect": "~0.6.0", + "grunt-contrib-jshint": "~0.8.0", + "chai": "~1.8.1", + "mocha": "~1.17.1", + "grunt-mocha-phantomjs": "~0.4.0", + "browserify": "~12.0.1", + "grunt-browserify": "~4.0.1", + "grunt-contrib-uglify": "~0.11.1", + "curl": "git://github.com/cujojs/curl.git", + "istanbul": "~0.2.4", + "tin": "~0.4.0" + }, + "dependencies": { + "mgrs": "~0.0.2" + } +} +},{}],"./includedProjections":[function(_dereq_,module,exports){ +module.exports=_dereq_('hTEDpn'); +},{}],"hTEDpn":[function(_dereq_,module,exports){ +var projs = [ + _dereq_('./lib/projections/tmerc'), + _dereq_('./lib/projections/utm'), + _dereq_('./lib/projections/sterea'), + _dereq_('./lib/projections/stere'), + _dereq_('./lib/projections/somerc'), + _dereq_('./lib/projections/omerc'), + _dereq_('./lib/projections/lcc'), + _dereq_('./lib/projections/krovak'), + _dereq_('./lib/projections/cass'), + _dereq_('./lib/projections/laea'), + _dereq_('./lib/projections/aea'), + _dereq_('./lib/projections/gnom'), + _dereq_('./lib/projections/cea'), + _dereq_('./lib/projections/eqc'), + _dereq_('./lib/projections/poly'), + _dereq_('./lib/projections/nzmg'), + _dereq_('./lib/projections/mill'), + _dereq_('./lib/projections/sinu'), + _dereq_('./lib/projections/moll'), + _dereq_('./lib/projections/eqdc'), + _dereq_('./lib/projections/vandg'), + _dereq_('./lib/projections/aeqd') +]; +module.exports = function(proj4){ + projs.forEach(function(proj){ + proj4.Proj.projections.add(proj); + }); +} +},{"./lib/projections/aea":40,"./lib/projections/aeqd":41,"./lib/projections/cass":42,"./lib/projections/cea":43,"./lib/projections/eqc":44,"./lib/projections/eqdc":45,"./lib/projections/gnom":47,"./lib/projections/krovak":48,"./lib/projections/laea":49,"./lib/projections/lcc":50,"./lib/projections/mill":53,"./lib/projections/moll":54,"./lib/projections/nzmg":55,"./lib/projections/omerc":56,"./lib/projections/poly":57,"./lib/projections/sinu":58,"./lib/projections/somerc":59,"./lib/projections/stere":60,"./lib/projections/sterea":61,"./lib/projections/tmerc":62,"./lib/projections/utm":63,"./lib/projections/vandg":64}]},{},[36]) +(36) +}); \ No newline at end of file diff --git a/proj4leaflet.js b/proj4leaflet.js new file mode 100644 index 0000000..5ce8d47 --- /dev/null +++ b/proj4leaflet.js @@ -0,0 +1,272 @@ +(function (factory) { + var L, proj4; + if (typeof define === 'function' && define.amd) { + // AMD + define(['leaflet', 'proj4'], factory); + } else if (typeof module === 'object' && typeof module.exports === "object") { + // Node/CommonJS + L = require('leaflet'); + proj4 = require('proj4'); + module.exports = factory(L, proj4); + } else { + // Browser globals + if (typeof window.L === 'undefined' || typeof window.proj4 === 'undefined') + throw 'Leaflet and proj4 must be loaded first'; + factory(window.L, window.proj4); + } +}(function (L, proj4) { + if (proj4.__esModule && proj4.default) { + // If proj4 was bundled as an ES6 module, unwrap it to get + // to the actual main proj4 object. + // See discussion in https://github.com/kartena/Proj4Leaflet/pull/147 + proj4 = proj4.default; + } + + L.Proj = {}; + + L.Proj._isProj4Obj = function(a) { + return (typeof a.inverse !== 'undefined' && + typeof a.forward !== 'undefined'); + }; + + L.Proj.Projection = L.Class.extend({ + initialize: function(code, def, bounds) { + var isP4 = L.Proj._isProj4Obj(code); + this._proj = isP4 ? code : this._projFromCodeDef(code, def); + this.bounds = isP4 ? def : bounds; + }, + + project: function (latlng) { + var point = this._proj.forward([latlng.lng, latlng.lat]); + return new L.Point(point[0], point[1]); + }, + + unproject: function (point, unbounded) { + var point2 = this._proj.inverse([point.x, point.y]); + return new L.LatLng(point2[1], point2[0], unbounded); + }, + + _projFromCodeDef: function(code, def) { + if (def) { + proj4.defs(code, def); + } else if (proj4.defs[code] === undefined) { + var urn = code.split(':'); + if (urn.length > 3) { + code = urn[urn.length - 3] + ':' + urn[urn.length - 1]; + } + if (proj4.defs[code] === undefined) { + throw 'No projection definition for code ' + code; + } + } + + return proj4(code); + } + }); + + L.Proj.CRS = L.Class.extend({ + includes: L.CRS, + + options: { + transformation: new L.Transformation(1, 0, -1, 0) + }, + + initialize: function(a, b, c) { + var code, + proj, + def, + options; + + if (L.Proj._isProj4Obj(a)) { + proj = a; + code = proj.srsCode; + options = b || {}; + + this.projection = new L.Proj.Projection(proj, options.bounds); + } else { + code = a; + def = b; + options = c || {}; + this.projection = new L.Proj.Projection(code, def, options.bounds); + } + + L.Util.setOptions(this, options); + this.code = code; + this.transformation = this.options.transformation; + + if (this.options.origin) { + this.transformation = + new L.Transformation(1, -this.options.origin[0], + -1, this.options.origin[1]); + } + + if (this.options.scales) { + this._scales = this.options.scales; + } else if (this.options.resolutions) { + this._scales = []; + for (var i = this.options.resolutions.length - 1; i >= 0; i--) { + if (this.options.resolutions[i]) { + this._scales[i] = 1 / this.options.resolutions[i]; + } + } + } + + this.infinite = !this.options.bounds; + + }, + + scale: function(zoom) { + var iZoom = Math.floor(zoom), + baseScale, + nextScale, + scaleDiff, + zDiff; + if (zoom === iZoom) { + return this._scales[zoom]; + } else { + // Non-integer zoom, interpolate + baseScale = this._scales[iZoom]; + nextScale = this._scales[iZoom + 1]; + scaleDiff = nextScale - baseScale; + zDiff = (zoom - iZoom); + return baseScale + scaleDiff * zDiff; + } + }, + + zoom: function(scale) { + // Find closest number in this._scales, down + var downScale = this._closestElement(this._scales, scale), + downZoom = this._scales.indexOf(downScale), + nextScale, + nextZoom, + scaleDiff; + // Check if scale is downScale => return array index + if (scale === downScale) { + return downZoom; + } + if (downScale === undefined) { + return -Infinity; + } + // Interpolate + nextZoom = downZoom + 1; + nextScale = this._scales[nextZoom]; + if (nextScale === undefined) { + return Infinity; + } + scaleDiff = nextScale - downScale; + return (scale - downScale) / scaleDiff + downZoom; + }, + + distance: L.CRS.Earth.distance, + + R: L.CRS.Earth.R, + + /* Get the closest lowest element in an array */ + _closestElement: function(array, element) { + var low; + for (var i = array.length; i--;) { + if (array[i] <= element && (low === undefined || low < array[i])) { + low = array[i]; + } + } + return low; + } + }); + + L.Proj.GeoJSON = L.GeoJSON.extend({ + initialize: function(geojson, options) { + this._callLevel = 0; + L.GeoJSON.prototype.initialize.call(this, geojson, options); + }, + + addData: function(geojson) { + var crs; + + if (geojson) { + if (geojson.crs && geojson.crs.type === 'name') { + crs = new L.Proj.CRS(geojson.crs.properties.name); + } else if (geojson.crs && geojson.crs.type) { + crs = new L.Proj.CRS(geojson.crs.type + ':' + geojson.crs.properties.code); + } + + if (crs !== undefined) { + this.options.coordsToLatLng = function(coords) { + var point = L.point(coords[0], coords[1]); + return crs.projection.unproject(point); + }; + } + } + + // Base class' addData might call us recursively, but + // CRS shouldn't be cleared in that case, since CRS applies + // to the whole GeoJSON, inluding sub-features. + this._callLevel++; + try { + L.GeoJSON.prototype.addData.call(this, geojson); + } finally { + this._callLevel--; + if (this._callLevel === 0) { + delete this.options.coordsToLatLng; + } + } + } + }); + + L.Proj.geoJson = function(geojson, options) { + return new L.Proj.GeoJSON(geojson, options); + }; + + L.Proj.ImageOverlay = L.ImageOverlay.extend({ + initialize: function (url, bounds, options) { + L.ImageOverlay.prototype.initialize.call(this, url, null, options); + this._projectedBounds = bounds; + }, + + // Danger ahead: Overriding internal methods in Leaflet. + // Decided to do this rather than making a copy of L.ImageOverlay + // and doing very tiny modifications to it. + // Future will tell if this was wise or not. + _animateZoom: function (event) { + var scale = this._map.getZoomScale(event.zoom); + var northWest = L.point(this._projectedBounds.min.x, this._projectedBounds.max.y); + var offset = this._projectedToNewLayerPoint(northWest, event.zoom, event.center); + + L.DomUtil.setTransform(this._image, offset, scale); + }, + + _reset: function () { + var zoom = this._map.getZoom(); + var pixelOrigin = this._map.getPixelOrigin(); + var bounds = L.bounds( + this._transform(this._projectedBounds.min, zoom)._subtract(pixelOrigin), + this._transform(this._projectedBounds.max, zoom)._subtract(pixelOrigin) + ); + var size = bounds.getSize(); + + L.DomUtil.setPosition(this._image, bounds.min); + this._image.style.width = size.x + 'px'; + this._image.style.height = size.y + 'px'; + }, + + _projectedToNewLayerPoint: function (point, zoom, center) { + var viewHalf = this._map.getSize()._divideBy(2); + var newTopLeft = this._map.project(center, zoom)._subtract(viewHalf)._round(); + var topLeft = newTopLeft.add(this._map._getMapPanePos()); + + return this._transform(point, zoom)._subtract(topLeft); + }, + + _transform: function (point, zoom) { + var crs = this._map.options.crs; + var transformation = crs.transformation; + var scale = crs.scale(zoom); + + return transformation.transform(point, scale); + } + }); + + L.Proj.imageOverlay = function (url, bounds, options) { + return new L.Proj.ImageOverlay(url, bounds, options); + }; + + return L.Proj; +}));