-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSeminar 10-Incomplete Information in Dynamic Games.tex
612 lines (463 loc) · 22.7 KB
/
Seminar 10-Incomplete Information in Dynamic Games.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\setlength{\parindent}{0pt}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=magenta,
urlcolor=cyan}
\usepackage{graphicx}
\graphicspath{ {./pic/} }
\usepackage{multicol}
\usepackage{lscape}
\usepackage{fourier,amssymb,microtype,amsmath,gensymb}
\newcommand{\R}{\mathbb{R}}
\usepackage{mdframed,caption,xcolor}
\usepackage{tikz,tkz-euclide}
\title{Seminar 10. Incomplete Information in Dynamic Games}
\author{Xiaoguang Ling \\ \href{[email protected]}{[email protected]}}
\date{\today}
\begin{document}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Problem 1 - Screening and signaling}
Consider again the strategic situation described in Problem 1 of the exercise set for the nineth seminar,
\begin{center}
Game $1$ \vspace{6pt}
$
\begin{array}{c|c|c|}
& L & R \\
\hline
U & 0,0 & 4,2 \\
\hline
D & 2,6 & 0,8 \\
\hline
\end{array}
$
\end{center}
\begin{center}
Game $2$ \vspace{6pt}
$
\begin{array}{c|c|c|}
& L & R \\
\hline
U' & 0,2 & 0,0 \\
\hline
D' & 2,0 & 2,2 \\
\hline
\end{array}
$
\end{center}
where only player 1 knows which game is being played, while player 2 thinks that the two games are \textbf{equally likely}.
\subsection*{(a) Screening} Assume now that \textbf{player 2 acts before player 1}, and that 2's choice can be observed by 1 before he makes his choice. Show that there is a unique subgame perfect Nash equilibrium.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Screening: Player \textbf{without} private information moves first $\Rightarrow$ there is nothing to infer (since player 1 knows everything, and player 2 has no chance to infer anything)
\begin{itemize}
\item Player 1 has private information: contingent strategy
\item Player 2 acts before player 1: can only choose between $L$ and $R$
\end{itemize}
\newpage
Extensive form:
\begin{center}
\begin{tikzpicture}[scale=1.5,font=\footnotesize]
\tikzset{
% Two node styles for game trees: solid and hollow
solid node/.style={circle,draw,inner sep=1.5,fill=black},
hollow node/.style={circle,draw,inner sep=1.5}
}
% Specify spacing for each level of the tree
\tikzstyle{level 1}=[level distance=20mm,sibling distance=37mm]
\tikzstyle{level 2}=[level distance=15mm,sibling distance=20mm]
\tikzstyle{level 3}=[level distance=15mm,sibling distance=10mm]
\tikzstyle arrowstyle=[scale=1]
\tikzstyle directed=[postaction={decorate,decoration={markings,
mark=at position .5 with {\arrow[arrowstyle]{stealth}}}}]
% The Tree
\node(0)[hollow node,label=left:{Nature}]{}[grow=east]
child{node(1)[solid node]{}
child{node(3)[solid node]{}
child{node[solid node,blue,label=right:{\textcolor{blue}{$(2,2)$}}]{}edge from parent node[left,blue,yshift=-3]{$D'$}}
child{node[solid node,label=right:{$(0,0)$}]{}edge from parent node[left,yshift=3]{$U'$}}
edge from parent node[left,yshift=-3]{$R$}}
child{node(4)[solid node]{}
child{node[solid node,blue,label=right:{\textcolor{blue}{$(2,0)$}}]{}edge from parent node[left,blue,yshift=-3]{$D'$}}
child{node[solid node,label=right:{$(0,2)$}]{}edge from parent node[left,yshift=3]{$U'$}}
edge from parent node[left,yshift=3]{$L$}
}
edge from parent node [midway, below, sloped] (TextNode) {Game 2}
}
child{node(2)[solid node]{}
child{node(5)[solid node]{}
child{node[solid node,label=right:{$(0,8)$}]{}edge from parent node[left,yshift=-3]{$D$}}
child{node[solid node,blue,label=right:{\textcolor{blue}{$(4,2)$}}]{}edge from parent node[left,blue,yshift=3]{$U$}}
edge from parent node[left,yshift=-3]{$R$}}
child{node(6)[solid node]{}
child{node[solid node,blue,label=right:{\textcolor{blue}{$(2,6)$}}]{}edge from parent node[left,blue,yshift=-3]{$D$}}
child{node[solid node,label=right:{$(0,0)$}]{}edge from parent node[left,yshift=3]{$U$}}
edge from parent node[left,yshift=3]{$L$}
}
edge from parent node [midway, above, sloped] (TextNode) {Game 1}
};
% information set
\draw [dashed] (2) -- (1) ;
% specify mover
\node at ($(1)!.5!(2)$) {\textcolor{red}{Player 2}};
\node at ($(5)!.5!(6)$) {\textcolor{blue}{Player 1}};
\node at ($(3)!.5!(4)$) {\textcolor{blue}{Player 1}};
\end{tikzpicture}
\end{center}
Player 1 acts contingently; Player 2 acts according to the expected payoff based on some belief $(\tfrac12,\tfrac12)$;
\begin{itemize}
\item Use backward induction method to firstly determin how player 1 will react (in blue) and then calculate player 2's expected payoff.
\item We can also find when Game 2 is played, for player 1, $D'$ dominates $U'$
\end{itemize}
The contingent strategy for player 1 is easy to express, since there is no incomplete information.
\end{mdframed}
The strategy of player 1:
\begin{itemize}
\item If Game 1 is played:
\begin{itemize}
\item when player 2 chooses $L$, player 1 chooses $D$
\item when player 2 chooses $R$, player 1 chooses $U$
\end{itemize}
\item If Game 2 is played:
\begin{itemize}
\item when player 2 chooses $L$, player 1 chooses $D'$
\item when player 2 chooses $R$, player 1 chooses $D'$
\end{itemize}
\end{itemize}
For player 2:
$$E(U^2_L) = \tfrac12 \times 6 +\tfrac12 \times 0 = 3$$
$$E(U^2_R) = \tfrac12 \times 2 +\tfrac12 \times 2 = 2$$
$$\Rightarrow E(U^2_L) > E(U^2_R)$$
The strategy of player 2 is to choose $L$.
\medskip
Therefore there is only one SPNE:
\{(For player 1) In Game 1: $D$ after $L$, $U$ after $R$. In Game 2, $D'$ after $L$, $D'$ after $R$ ; (For player 2) $L$\}
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Compare the question with the \href{https://www.uio.no/studier/emner/sv/oekonomi/ECON4220/previous-exams/econ32_4220_2019h_sensorveiledning.pdf}{2019 exam problem 2(e)}.
\medskip
Don't get tricked when the question says ``$U$ acts before $I$" but ``$U$ can choose between the four strategies $CC'$, $CE'$,
$EC'$ and $EE'$ ''
\medskip
In the question, $U$'s strategy is like an agreement, which is passive and can only be activated by the choice of $I$; while only $I$ has contingent strategy.
\end{mdframed}
\subsection*{(b) Signaling} Assume now that player 1 acts before player 2, and that 1's choice can be observed by 2 before she makes her choice. Show that there is a unique separating perfect Bayesian equilibrium.
\bigskip
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Signaling: Player \textbf{with} private information moves first $\Rightarrow$
Player 2 can observe and infer the "type" of player 1.
\begin{itemize}
\item Both players have contingent strategy (Geir prefers not to distinguish player 2's contingent strategy in notation)
\item Player 2 observes $U/U'$ or $D/D'$ $\Rightarrow$ updates belief ($p\&q$) $\Rightarrow$ choose between $L$ and $R$
\end{itemize}
where player 2's updated belief is:
\begin{itemize}
\item $Pr(\text{Game1} | U/U') = p$
\item $Pr(\text{Game1} | D/D') = q$
\end{itemize}
\begin{tikzpicture}[scale=1.4,font=\footnotesize]
\tikzset{
% Two node styles for game trees: solid and solid
solid node/.style={circle,draw,inner sep=1.5,fill=black},
hollow node/.style={circle,draw,inner sep=1.5}}
% Specify spacing for each level of the tree
\tikzstyle{level 1}=[level distance=12mm,sibling distance=25mm]
\tikzstyle{level 2}=[level distance=15mm,sibling distance=15mm]
\tikzstyle{level 3}=[level distance=17mm,sibling distance=10mm]
% The Tree
\node(0)[hollow node,label=right:{Nature}]{}
child[grow=up]{node[solid node,label=above:{
\begin{tabular}{c}
\textcolor{blue}{Player 1} \\ \\
\end{tabular}}] {}
child[grow=left]{node(1)[solid node,label=above:{$p$}]{}
child{node[solid node,label=left:{$(0,0)$}]{} edge from parent node [above]{$L$}}
child{node[solid node,label=left:{$(4,2)$}]{} edge from parent node [below]{$R$}}
edge from parent node [above]{U}}
child[grow=right]{node(3)[solid node,label=above:{$q$}]{}
child{node[solid node,label=right:{$(0,8)$}]{} edge from parent node [below]{$R'$}}
child{node[solid node,label=right:{$(2,6)$}]{} edge from parent node [above]{$L'$}}
edge from parent node [above]{D}
}
edge from parent node [right]{$\tfrac12$} node [midway, above, sloped] (TextNode){Game 1}
}
child[grow=down]{node[solid node,label=below:{\begin{tabular}{c}
\\ \textcolor{blue}{Player 1}
\end{tabular}}] {}
child[grow=left]{node(2)[solid node,label=below:{$1-p$}]{}
child{node[solid node,label=left:{$(0,2)$}]{} edge from parent node [above]{$L$}}
child{node[solid node,label=left:{$(0,0)$}]{} edge from parent node [below]{$R$}}
edge from parent node [below]{U'}
}
child[grow=right]{node(4)[solid node,label=below:{$1-q$}]{}
child{node[solid node,label=right:{$(2,2)$}]{} edge from parent node [below]{$R'$}}
child{node[solid node,label=right:{$(2,0)$}]{} edge from parent node [above]{$L'$}}
edge from parent node [below]{\textcolor{blue}{D'}}
}
edge from parent node [right]{$\tfrac12$} node[midway, below, sloped] (TextNode){Game 2}
};
% information set
\draw [dashed] (2) -- (1) node [midway, above, sloped, red] (TextNode) {Player 2};
\draw [dashed] (3) -- (4) node [midway, above, sloped, red] (TextNode) {Player 2};
\end{tikzpicture}
Note that for player 1, when Game 2 is played, $D'$ dominates $U'$. Therefore player 1 can
only have 2 possible strategies: $UD'$ (if separating) and $DD'$(if pooling).
\medskip
The question wants you to show there is a unique separating PBE. So you only need to show $UD'$ can be part of a PBE.
\bigskip
\textbf{(1) Separating PBE}
\medskip
If player 2 believes $UD'$ is the strategy of player 2, then
$$p=1, q=0$$
and the BR of player 2 is $RR'$.
\medskip
\textbf{Will player 1 deviate from $U$ to $D$ if Game 1 is played? }No, if player 1
deviates to $D$, according to player 2's belief (player 2 believes Game 2 is played and thus chooses $R'$), the payoff is $(0,8)$, lower than $(4,2)$ if not deviate.
\medskip
This is therefore a unique separating PBN:
$$\{UD',RR',p=1,q=0\}$$
(don't forget the belief supporting the PBN)
\bigskip
\textbf{(2) Pooling PBE}
\medskip
There actually can also be a pooling PBE.
\medskip
If player 2 believes $DD'$ is the strategy of player 2, then
$$q=Pr(\text{Game 1})=\tfrac12$$
\medskip
You can apply the conclusion $q=Pr(\text{Game 1})$ in a pooling PBE directly, but this is acutally consistent with Bayes' rule:
\begin{align*}
Pr(\text{Game1} | D/D') &= \frac{Pr(D/D'|\text{Game1}) Pr(\text{Game1})}{Pr(D/D')} \\
&= \frac{1 \times \tfrac12}{1}
\end{align*}
Therefore, when observing $D/D'$, player 2's expected payoff is:
$$E[U^2_{L'}] = \tfrac12 \times 6+ \tfrac12 \times 0 = 3$$
$$E[U^2_{R'}] = \tfrac12 \times 8+ \tfrac12 \times 2 = 5$$
Player 2's BR is $R'$.
\medskip
\textbf{Will player 1 deviate from $D$ to $U$ if Game 1 is played?} It depends on what player 2 will do if the "surprise" shows up.
\medskip
If player 2 chooses $R$ after $U$, player 1 will deviate; if player 2 chooses $L$ after $U$, there is no incentive to deviate.
\medskip
Then under what condition will player 2 chooses $L$ after $U$? Expected payoff!
$$E[U^2_{L}] = p \times 0+ (1-p)\times 2 = 2(1-p)$$
$$E[U^2_{R}] = p \times 2+ \tfrac12 \times 0 = 2p$$
$$E[U^2_{L}] \ge E[U^2_{R}] \Rightarrow 2(1-p) \ge 2p \Rightarrow p \le \tfrac12$$
To support the pooling PBE, we must have $p \le \tfrac12$.
Note here since $U$ is not expected by player 2, we don't need to think about Bayes' rule.
\medskip
The pooling PBE is:
$$\{DD', LR', p \le \tfrac12, q = \tfrac12\}$$
\textbf{However, this PBE is not realistic}. Since player 2 knows clearly that if Game 2 is played, $U'$ will never be chosen by player 1. Therefore $1-p = 0, p =1 \ge \tfrac12$.
\medskip
We can say that the PBE here is consistent with the definition of PBE, but unrealistic. This is a defect of PBE. In exam you'll often be asked about which PBE (either pooling or separating) is unrealistic/unlikely to happen.
\medskip
The following is how to answer the question in exam:
\end{mdframed}
(1) Draw the extensive form first
\begin{mdframed}[backgroundcolor=yellow!20,linecolor=white]
Important. Be careful about the order of payoff, who is player 1 and who is player 2.
\end{mdframed}
From the extensive form we can see $D'$ dominates $U'$.
Therefore there can only be one separating PBE where player 1's strategy is $UD'$
(2) Denote the updated belief of player 2:
\begin{itemize}
\item $Pr(\text{Game1} | U/U') = p$
\item $Pr(\text{Game1} | D/D') = q$
\end{itemize}
For the separating PBE, $p=1,q=0$. The BR of player 2 is
$RR'$. Therefore the PBE is
$$\{UD',RR',p=1,q=0\}$$
\section{Problem 2 - Signaling pizza problem}
Consider the situation of Problem 1 of the eighth seminar, but assume now in addition that the pizza comes in 5
different sizes, each with $x$ slices, where $x \in \{4, 6, 8, 10, 12\}$. \textbf{Player 1 observes $x$}
before making her demand, while players 2 only observes player 1's demand, but not $x$, before
having to make his own demand. Before observing player 1's demand, player 2 thinks that the 5
different pizza sizes are equally likely, but he may infer something from her demand.
%
\subsection*{(a) Explain what a strategy is for player 1 in this game of incomplete information.}
%
Player 1's strategy is contingent on the size of pizza ($x$), i.e. $s_1(x)$,
where $x \in \{4, 6, 8, 10, 12\}$.
\subsection*{(b) Perfect Bayesian
equilibrium} Show that the following strategy for player 1 can be part of a perfect Bayesian
equilibrium: $s_1(4) = 2$, $s_1(6) = 3$, $s_1(8) = 4$, $s_1(10) = 5$, $s_1(12) = 11$. Specify
both player 2's strategy and player 2's beliefs.
%
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
The strategy can only be part of a separating PBE. In this case, player 2 believes
that player 1 sends signals by taking half the pizza, i.e. he thinks the size is $4,6,8,10,12$ once he observes player 1 asked for $2,3,4,5,11$.
\medskip
Denote player 2's belief (probability on sizes $4, 6, 8, 10, 12$) as $\mu(x)$, and the BR of player 2 as $s_2^*$, we have:
\begin{center}
\begin{tabular}{|c|ccccc|c|}
\multicolumn{1}{c}{} & \multicolumn{6}{c}{Belief $\mu(x)$ for $x = \quad \quad \quad$} \\
$s_1$ & $4,$ & $6,$ & $8,$ & $10$ & $12$ & $s_2^*$ \\ \cline{1-7}
$2$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $2$ \\
$3$ & $(0,$ & $1,$ & $0,$ & $0,$ & $0)$ & $3$ \\
$4$ & $(0,$ & $0,$ & $1,$ & $0,$ & $0)$ & $4$ \\
$5$ & $(0,$ & $0,$ & $0,$ & $1,$ & $0)$ & $5$ \\
$11$& $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $1$ \\
\hline
\end{tabular}
\end{center}
\textbf{Note that the belief above is required by Bayes' rule.}
\medskip
What if player 1 surprisingly asked for, for example, 6 slices? As long as the payoff is lower than PBE result, there is no deviation. The following belief can make sure so:
\begin{center}
\begin{tabular}{|c|ccccc|c|}
\multicolumn{1}{c}{} & \multicolumn{6}{c}{Belief $\mu(x)$ for $x = \quad \quad \quad$} \\
$s_1$ & $4,$ & $6,$ & $8,$ & $10$ & $12$ & $s_2^*$ \\ \cline{1-7}
$0$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $4$ \\
$1$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $3$ \\ \hline
\textcolor{blue}{$2$} & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $2$ \\
\textcolor{blue}{$3$} & $(0,$ & $1,$ & $0,$ & $0,$ & $0)$ & $3$ \\
\textcolor{blue}{$4$} & $(0,$ & $0,$ & $1,$ & $0,$ & $0)$ & $4$ \\
\textcolor{blue}{$5$} & $(0,$ & $0,$ & $0,$ & $1,$ & $0)$ & $5$ \\ \hline
$6$ & $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $6$ \\
$7$ & $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $5$ \\
$8$ & $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $4$ \\
$9$ & $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $3$ \\
$10$& $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $2$ \\ \hline
\textcolor{blue}{$11$}& $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $1$ \\ \hline
$12$ & $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $\ge 1$ \\
\end{tabular}
\end{center}
Note that the belief for strategies in black is \textbf{NOT} required by Bayes' rule.
\medskip
For example, if the size $x=10$, on the equilibrium path, player 1 should ask for
5. But if player 1 surprisingly asks for 6, according to player 2's belief (player 2
believes the size is 12), player 2 asks for 6 and the payoff is $(0,0)$. There is no incentive to deviate.
\end{mdframed}
\subsection*{(c) Are there other perfect Bayesian equilibria in this game?} %
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Here is another example of PBE: player 2 thinks that player 1 sends signal by taking $x-1$ slices of pizza; if player 2 thinks player 1 surprisingly took the whole pizza, he will ruin the pizza to punish player 1. There is no incentive to deviate.
\begin{center}
\begin{tabular}{|c|ccccc|c|}
\multicolumn{1}{c}{} & \multicolumn{6}{c}{$\mu(x)$ for $x =$} \\
$s_1$ & $4,$ & $6,$ & $8,$ & $10$ & $12$ & $s_2^*$ \\ \cline{1-7}
$0$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $4$ \\
$1$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $3$ \\
$2$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $2$ \\
\textcolor{blue}{$3$} & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $1$ \\ \hline
$4$ & $(1,$ & $0,$ & $0,$ & $0,$ & $0)$ & $\ge 1$ \\
\textcolor{blue}{$5$} & $(0,$ & $1,$ & $0,$ & $0,$ & $0)$ & $1$ \\ \hline
$6$ & $(0,$ & $1,$ & $0,$ & $0,$ & $0)$ & $\ge 1$ \\
\textcolor{blue}{$7$} & $(0,$ & $0,$ & $1,$ & $0,$ & $0)$ & $1$ \\ \hline
$8$ & $(0,$ & $0,$ & $1,$ & $0,$ & $0)$ & $\ge 1$ \\
\textcolor{blue}{$9$} & $(0,$ & $0,$ & $0,$ & $1,$ & $0)$ & $1$ \\ \hline
$10$& $(0,$ & $0,$ & $0,$ & $1,$ & $0)$ & $\ge 1$ \\
\textcolor{blue}{$11$}& $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $1$ \\ \hline
$12$ & $(0,$ & $0,$ & $0,$ & $0,$ & $1)$ & $\ge 1$ \\
\end{tabular}
\end{center}
\end{mdframed}
\bigskip
\section{Problem 3 - Challenging an incumbent}
Consider a market where there is an incumbent firm and a challenger. The challenger is
\textit{strong} with probability $\tfrac12$ and \textit{weak} with probability $\tfrac12$; it knows its type, but the incumbent
does not. The challenger may either \textit{prepare} itself for battle or remain \textit{unprepared}. The
incumbent observes the challenger's preparedness, but not its type, and chooses whether to
\textit{fight} ($F$) or \textit{acquiesce} ($A$). The extensive form and the payoffs are given by the following
figure. The challenger's payoff is listed first, the incumbent's second.
\bigskip
\begin{tikzpicture}[scale=1.4,font=\footnotesize]
\tikzset{
% Two node styles for game trees: solid and solid
solid node/.style={circle,draw,inner sep=1.5,fill=black},
hollow node/.style={circle,draw,inner sep=1.5}}
% Specify spacing for each level of the tree
\tikzstyle{level 1}=[level distance=12mm,sibling distance=25mm]
\tikzstyle{level 2}=[level distance=15mm,sibling distance=15mm]
\tikzstyle{level 3}=[level distance=17mm,sibling distance=10mm]
% The Tree
\node(0)[hollow node,label=right:{Nature}]{}
child[grow=up]{node[solid node,label=above:{
\begin{tabular}{c}
\textcolor{red}{Challenger(P1)} \\ \\
\end{tabular}}] {}
child[grow=left]{node(1)[solid node,label=above:{$p$}]{}
child{node[solid node,label=left:{$(4,1)$}]{} edge from parent node [above]{$A$}}
child{node[solid node,label=left:{$(2,-1)$}]{} edge from parent node [below]{$F$}}
edge from parent node [above]{Prepared}}
child[grow=right]{node(3)[solid node,label=above:{$q$}]{}
child{node[solid node,label=right:{$(3,-1)$}]{} edge from parent node [below]{$F'$}}
child{node[solid node,label=right:{$(5,1)$}]{} edge from parent node [above]{$A'$}}
edge from parent node [above]{Unprepared}
}
edge from parent node [right]{$\tfrac12$} node [midway, above, sloped] (TextNode){Strong}
}
child[grow=down]{node[solid node,label=below:{\begin{tabular}{c}
\\ \textcolor{red}{Challenger(P1)}
\end{tabular}}] {}
child[grow=left]{node(2)[solid node,label=below:{$1-p$}]{}
child{node[solid node,label=left:{$(2,2)$}]{} edge from parent node [above]{$A$}}
child{node[solid node,label=left:{$(0,3)$}]{} edge from parent node [below]{$F$}}
edge from parent node [below]{Prepared'}
}
child[grow=right]{node(4)[solid node,label=below:{$1-q$}]{}
child{node[solid node,label=right:{$(3,3)$}]{} edge from parent node [below]{$F'$}}
child{node[solid node,label=right:{$(5,2)$}]{} edge from parent node [above]{$A'$}}
edge from parent node [below]{\textcolor{red}{Unprepared'}}
}
edge from parent node [right]{$\tfrac12$} node[midway, below, sloped] (TextNode){Weak}
};
% information set
\draw [dashed] (2) -- (1) node [midway, above, sloped, blue] (TextNode) {Incumbent(P2)};
\draw [dashed] (3) -- (4) node [midway, above, sloped, blue] (TextNode) {Incumbent(P2)};
\end{tikzpicture}
\medskip
\subsection*{(a) What are the (pure) strategies for the challenger?}
The challenger's strategy set: $\{PP', PU', UP', UU'\}$.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Contingent on the type. For example, $PU'$ means "Prepared if I'm strong, Unprepared if I'm weak".
\end{mdframed}
\subsection*{(b) Why is there no perfect Bayesian equilibrium where the weak challenger chooses
\textit{Prepared}$'$ ? }
Prepared$'$ is dominated by Unprepared$'$.
It is always better for the weak challenger to choose $U'$, independently of
what the incumbent does.
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Is {Prepared} dominated by {Unprepared} (for strong challenger)?
No! If the Incumbent has (contingent) strategy $AF'$, Prepared has better payoff.
\end{mdframed}
\subsection*{(c) Separating}Show that there is a perfect Bayesian equilibrium where the strong challenger chooses
\textit{Prepared} and the weak challenger chooses \textit{Unprepared}$'$.
Denote the updated belief of player 2:
\begin{itemize}
\item $Pr(\text{Strong} | P/P') = p$
\item $Pr(\text{Weak} | U/U') = q$
\end{itemize}
For the separating PBE, $p=1,q=0$. The BR of the incumbent is
$AF'$. Therefore the PBE is
$$\{PU',AF',p=1,q=0\}$$
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Will the challenger deviate?
\end{mdframed}
\subsection*{(d) Pooling}Show that there is a perfect Bayesian equilibrium where the strong challenger chooses
\textit{Unprepared} and the weak challenger chooses \textit{Unprepared}$'$. What do we call such an
equilibrium?
For the pooling PBE, $q=Pr(\text{Strong})= \tfrac12$ according to Bayes' rule.
$$E[U^I_{A'}] = \tfrac12 \times 1+ \tfrac12 \times 2 =1.5$$
$$E[U^I_{F'}] = \tfrac12 \times (-1)+ \tfrac12 \times 3 = 1 $$
The BR of player 2 is $A'$. For a strong challenger, choosing U will lead to payoff result $(5,1)$. Higher than deviating to P no matter what the incumbent does. There can be 2 pooling PBE:
\medskip
(1) When the challenger surprisingly chooses $P/P'$, the incumbent chooses $A$:
$$E[U^I_{A}] = p \times 1+ (1-p)\times 2 = p + 2(1-p) = 2 - p$$
$$E[U^I_{F}] = p \times (-1)+ \tfrac12 \times 3 = -p + 3(1-p) = 3 - 4p$$
$$E[U^I_{A}] \ge E[U^I_{F}] \Rightarrow 2-p \ge 3-4p \Rightarrow p \ge \tfrac13$$
The PBE is
$$\{UU',AA',p \ge \tfrac13, q=\tfrac12\}$$
\medskip
(2) When the challenger surprisingly chooses $P/P'$, the incumbent chooses $F$:
$$E[U^I_{A}] \le E[U^I_{F}] \Rightarrow 2-p \le 3-4p \Rightarrow p \le \tfrac13$$
The PBE is
$$\{UU',FA',p \le \tfrac13, q=\tfrac12\}$$
\begin{mdframed}[backgroundcolor=blue!20,linecolor=white]
Which pooling PBE is more likely to happen? Why?
\end{mdframed}
\end{document}