-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_tgt_adv.py
309 lines (227 loc) · 10.5 KB
/
train_tgt_adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# train.py
import time
import torch
import torch.optim as optim
import plugins
import losses
from train_encr import kernel_Gaussian
from train_encr import kernel_poly
class Trainer:
def __init__(self, args, model, criterion, evaluation, lam):
# self.E_Gaussian = losses.encoder_Gaussian()
self.args = args
self.lam = lam
self.r = args.r
self.model_A = model['Adversary']
self.model_T = model['Target']
self.criterion_A = criterion['Adversary']
self.criterion_T = criterion['Target']
self.evaluation_A = evaluation['Adversary']
self.evaluation_T = evaluation['Target']
self.save_results = args.save_results
if args.kernel == 'Gaussian':
self.kernel = kernel_Gaussian()
elif args.kernel == 'Polynomial':
self.kernel = kernel_poly()
self.env = args.env
self.port = args.port
self.dir_save = args.save_dir
self.log_type = args.log_type
self.device = args.device
self.nepochs = args.nepochs
self.batch_size = args.batch_size_train
self.lr_a = args.learning_rate_a
self.lr_t = args.learning_rate_t
self.optim_method = args.optim_method
self.optim_options = args.optim_options
self.scheduler_method = args.scheduler_method
self.scheduler_options = args.scheduler_options
# import pdb
# pdb.set_trace()
self.optimizer_A = getattr(optim, self.optim_method)(
filter(lambda p: p.requires_grad, self.model_A.parameters()),
lr=self.lr_a, **self.optim_options)
self.optimizer_T = getattr(optim, self.optim_method)(
filter(lambda p: p.requires_grad, self.model_T.parameters()),
lr=self.lr_t, **self.optim_options)
if self.scheduler_method is not None:
self.scheduler_A = getattr(optim.lr_scheduler, self.scheduler_method)(
self.optimizer_A, **self.scheduler_options
)
self.scheduler_T = getattr(optim.lr_scheduler, self.scheduler_method)(
self.optimizer_T, **self.scheduler_options
)
# for classification
self.labels = torch.zeros(
self.batch_size,
dtype=torch.long,
device=self.device
)
self.sensitives = torch.zeros(
self.batch_size,
dtype=torch.long,
device=self.device
)
self.inputs = torch.zeros(
self.batch_size,
dtype=torch.float,
device=self.device
)
# import pdb; pdb.set_trace()
# logging training
self.log_loss = plugins.Logger(
args.logs_dir,
'TrainLogger_%.4f.txt' %self.lam,
self.save_results
)
self.params_loss = ['Loss_A', 'Loss_T', 'Accuracy_A', 'Accuracy_T']
self.log_loss.register(self.params_loss)
# monitor training
self.monitor = plugins.Monitor()
self.params_monitor = {
'Loss_A': {'dtype': 'running_mean'},
'Loss_T': {'dtype': 'running_mean'},
'Accuracy_A': {'dtype': 'running_mean'},
'Accuracy_T': {'dtype': 'running_mean'},
}
self.visualizer = plugins.Visualizer(self.port, self.env, 'Train')
self.params_visualizer = {
'Loss_A': {'dtype': 'scalar', 'vtype': 'plot', 'win': 'loss_A',
'layout': {'windows': ['train', 'test'], 'id': 0}},
'Loss_T': {'dtype': 'scalar', 'vtype': 'plot', 'win': 'loss_T',
'layout': {'windows': ['train', 'test'], 'id': 0}},
'Accuracy_A': {'dtype': 'scalar', 'vtype': 'plot', 'win': 'accuracy_A',
'layout': {'windows': ['train', 'test'], 'id': 0}},
'Accuracy_T': {'dtype': 'scalar', 'vtype': 'plot', 'win': 'accuracy_T',
'layout': {'windows': ['train', 'test'], 'id': 0}},
}
self.monitor.register(self.params_monitor)
self.visualizer.register(self.params_visualizer)
if self.log_type == 'traditional':
# display training progress
self.print_formatter = 'Train [%d/%d][%d/%d] '
for item in self.params_loss:
self.print_formatter += item + " %.4f "
elif self.log_type == 'progressbar':
# progress bar message formatter
self.print_formatter = '({}/{})'
for item in self.params_loss:
self.print_formatter += '| ' + item + ' {:.4f}'
self.print_formatter += '| lr: {:.2e}'
self.print_formatter += '| lam: {:.4f}'
self.print_formatter += '| Kernel: {:7s}'
self.evalmodules = []
self.losses = {}
self.model_A.train()
self.model_T.train()
def train(self, epoch, dataloader, theta, X_old):
dataloader = dataloader['train']
self.monitor.reset()
# switch to train mode
if self.log_type == 'progressbar':
# Progress bar
processed_data_len = 0
bar = plugins.Bar('{:<2}'.format('Train'), max=len(dataloader))
end = time.time()
if self.args.kernel != 'Linear':
n = X_old.shape[0]
D = torch.eye(n) - torch.ones(n) / n
for i, (inputs, labels, sensitives) in enumerate(dataloader):
# keeps track of data loading time
data_time = time.time() - end
############################
# Update network
############################
# inputs= inputs.float()
batch_size = inputs.size(0)
# self.inputs.resize_(inputs.size()).copy_(inputs)
self.labels.resize_(labels.size()).copy_(labels)
self.sensitives.resize_(sensitives.size()).copy_(sensitives)
# self.labels = self.labels.float()
if self.args.kernel == 'Linear':
self.outputs_E = torch.mm(inputs, torch.t(theta)).to(self.device)
elif self.args.kernel == 'Gaussian':
K = self.kernel(X_old, inputs, self.args.sigma)
self.outputs_E = torch.mm(torch.mm(torch.t(K), D), torch.t(theta)).to(self.device)
elif self.args.kernel == 'Polynomial':
K = self.kernel(X_old, inputs, self.args.c, self.args.d)
# import pdb; pdb.set_trace()
self.outputs_E = torch.mm(torch.mm(torch.t(K), D), torch.t(theta)).to(self.device)
# self.outputs_E = torch.mm(torch.t(K)-torch.mean(torch.t(K), dim=1), torch.t(theta)).to(self.device)
outputs_A = self.model_A(self.outputs_E.float())
outputs_T = self.model_T(self.outputs_E.float())
if self.args.dataset_train == 'YaleB':
Y = torch.zeros(batch_size, self.args.nclasses_t).scatter_(1, self.labels.long().cpu(), 1).to(self.device)
S = torch.zeros(batch_size, self.args.nclasses_a).scatter_(1, self.sensitives.long().cpu(), 1).to(self.device)
# import pdb; pdb.set_trace()
loss_A = self.criterion_A(outputs_A.squeeze(), S)
loss_T = self.criterion_T(outputs_T.squeeze(), Y)
else:
loss_A = self.criterion_A(outputs_A.squeeze(), self.sensitives.squeeze())
loss_T = self.criterion_T(outputs_T.squeeze(), self.labels.squeeze())
self.optimizer_A.zero_grad()
self.optimizer_T.zero_grad()
loss_A.backward(retain_graph=True)
self.optimizer_A.step()
self.optimizer_A.zero_grad()
self.optimizer_T.zero_grad()
loss_T.backward()
self.optimizer_T.step()
# loss = (1 - self.lam) * loss_T - self.lam * loss_A
acc_A = self.evaluation_A(outputs_A, self.sensitives)
acc_T = self.evaluation_T(outputs_T, self.labels)
# import pdb; pdb.set_trace()
acc_A = acc_A[0].item()
acc_T = acc_T[0].item()
# loss = loss.item()
loss_A = loss_A.item()
loss_T = loss_T.item()
# self.losses['Loss_test'] = loss
self.losses['Loss_A'] = loss_A
self.losses['Loss_T'] = loss_T
self.losses['Accuracy_A'] = acc_A
self.losses['Accuracy_T'] = acc_T
# import pdb
# pdb.set_trace()
# self.losses['embedding'] = acc_A
self.monitor.update(self.losses, batch_size)
if self.log_type == 'traditional':
# print batch progress
print(self.print_formatter % tuple(
[epoch + 1, self.nepochs, i+1, len(dataloader)] +
+[self.losses[key] for key in self.params_monitor]))
elif self.log_type == 'progressbar':
# update progress bar
batch_time = time.time() - end
processed_data_len += len(inputs)
bar.suffix = self.print_formatter.format(
# *[processed_data_len, len(dataloader.sampler), data_time,
# batch_time, bar.elapsed_td, bar.eta_td]
*[processed_data_len, len(dataloader.sampler)]
+[self.losses[key] for key in self.params_monitor]
+[self.optimizer_A.param_groups[-1]['lr']]
+[self.lam]
+[self.args.kernel]
)
bar.next()
end = time.time()
#
if self.log_type == 'progressbar':
bar.finish()
loss = self.monitor.getvalues()
# import pdb; pdb.set_trace()
self.log_loss.update(loss)
# if self.encoder ==True:
# if self.args.adverserial_type == 'closed-form':
# if epoch%20==0:
# loss['embedding_A'] = [self.outputs_E.detach().cpu().numpy(), self.sensitives.detach().cpu().numpy(), self.labels.cpu().detach().cpu().numpy()]
# loss['embedding_T'] = [self.outputs_E.detach().cpu().numpy(), self.sensitives.detach().cpu().numpy(), self.labels.cpu().detach().cpu().numpy()]
self.visualizer.update(loss)
if self.scheduler_method is not None:
if self.scheduler_method == 'ReduceLROnPlateau':
self.scheduler_A.step(loss['Loss'])
self.scheduler_T.step(loss['Loss'])
else:
self.scheduler_A.step()
self.scheduler_T.step()
return loss, self.inputs