-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
513 lines (441 loc) · 23.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# train.py
import os
import torch
import numpy as np
import torch.nn as nn
from loss import EntropyLoss
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import CosineAnnealingLR
from utils.util import AverageMeter, accuracy, Logger
class MaxentNet:
def __init__(self, data,
train_loader=None,
test_loader=None,
total_epoch=200,
alpha=0.1,
epsilon=0.1,
use_cuda=False,
resume=False,
ckpt_filename=None,
resume_filename=None,
privacy_flag=True,
privacy_option='maxent-arl',
print_interval_train=10,
print_interval_test=10
):
# data info
self.data = data
self.train_loader = train_loader
self.test_loader = test_loader
self.n_sensitive_class = self.data.n_sensitive_class
self.n_target_class = self.data.n_target_class
# models
self.adv_net = data.adversary_net
self.target_net = data.target_net
self.discriminator_net = data.discriminator_net
# optimizer
self.optimizer = data.optimizer
self.discriminator_optimizer = data.discriminator_optimizer
self.adv_optimizer = data.adv_optimizer
self.target_optimizer = data.target_optimizer
# loss
self.kl_loss = nn.KLDivLoss()
self.cross_entropy_loss = nn.CrossEntropyLoss()
self.entropy_loss = EntropyLoss()
self.nll_loss = nn.NLLLoss()
self.mse_loss = nn.MSELoss()
# filename
self.log_file_name = ckpt_filename+"_log.txt"
self.adv_log_file_name = ckpt_filename+"_adv_log.txt"
self.target_log_file_name = ckpt_filename + "_target_log.txt"
self.checkpoint_filename = ckpt_filename
self.adv_checkpoint_filename = ckpt_filename+"_adv.ckpt"
self.target_checkpoint_filename = ckpt_filename + "_target.ckpt"
# algorithm and visualization parameters
self.alpha = torch.tensor([alpha*1.0], requires_grad=True)
self.resume = resume
self.epoch = 0
self.gamma_param = 0.01
self.plot_interval = 10
self.print_interval_train = print_interval_train
self.print_interval_test = print_interval_test
self.use_cuda = use_cuda
self.privacy_flag = privacy_flag
self.privacy_option = privacy_option
# local variables
self.uniform = torch.tensor(1 / (self.data.n_sensitive_class)).repeat(self.data.n_sensitive_class)
self.target_label = torch.zeros(0, dtype=torch.long)
self.sensitive_label = torch.zeros(0, dtype=torch.long)
self.sensitive_label_onehot = torch.FloatTensor(0, self.data.n_sensitive_class)
self.target_label_onehot = torch.FloatTensor(0, self.data.n_target_class)
self.inputs = torch.zeros(0, 0, 0)
self.inputs.requires_grad = False
self.batch_uniform = torch.FloatTensor(0, self.data.n_sensitive_class)
self.epsilon = torch.tensor([epsilon]).float()
if resume:
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
if self.use_cuda:
checkpoint = torch.load(os.path.join('checkpoint/', resume_filename))
else:
checkpoint = torch.load(os.path.join('checkpoint/',resume_filename), map_location=lambda storage, loc: storage)
self.net = checkpoint['net']
self.best_acc = 0 # checkpoint['acc']
self.start_epoch = 0 # checkpoint['epoch']
self.total_epoch = total_epoch # + self.start_epoch
for param in self.net.parameters():
param.requires_grad = True
else:
self.net = data.net
self.best_acc = 0
self.start_epoch = 0
self.total_epoch = total_epoch
if self.use_cuda:
self.net = self.net.cuda()
self.discriminator_net = self.discriminator_net.cuda()
self.adv_net = self.adv_net.cuda()
self.target_net = self.target_net.cuda()
self.net = nn.DataParallel(self.net, device_ids=range(torch.cuda.device_count()))
self.target_net = nn.DataParallel(self.target_net, device_ids=range(torch.cuda.device_count()))
self.discriminator_net = nn.DataParallel(self.discriminator_net, device_ids=range(torch.cuda.device_count()))
self.adv_net = nn.DataParallel(self.adv_net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
self.inputs = self.inputs.cuda()
self.target_label = self.target_label.cuda()
self.sensitive_label = self.sensitive_label.cuda()
self.sensitive_label_onehot = self.sensitive_label_onehot.cuda()
self.target_label_onehot = self.target_label_onehot.cuda()
self.uniform = self.uniform.cuda()
self.batch_uniform = self.batch_uniform.cuda()
self.alpha = self.alpha.cuda()
self.best_loss = 1e16
self.adv_best_acc = 0
self.target_best_acc = 0
self.t_losses, self.t_top1, self.d_losses, self.d_top1 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
self.e_losses, self.losses = AverageMeter(), AverageMeter()
self.t_top5, self.d_top5 = AverageMeter(), AverageMeter()
self.adv_losses, self.adv_top1, self.adv_top5, self.entropy_losses = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
self.target_losses, self.target_top1, self.target_top5, self.target_entropy_losses = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
def perform_epoch(self, epoch, test_flag=False):
if test_flag:
self.net.eval()
self.discriminator_net.eval()
self.target_net.eval()
loader = self.test_loader
string = "Test"
print_interval = self.print_interval_test
data_size = len(self.test_loader)
else:
self.net.train()
self.discriminator_net.train()
self.target_net.train()
loader = self.train_loader
string = "Train"
print_interval = self.print_interval_train
data_size = len(self.train_loader)
iteration = 0
self.t_losses.reset()
self.e_losses.reset()
self.losses.reset()
self.d_losses.reset()
self.t_top1.reset()
self.d_top1.reset()
self.t_top5.reset()
self.d_top5.reset()
self.entropy_losses.reset()
for batch_idx, (inputs, target_label, sensitive_label) in enumerate(loader):
batch_size = inputs.size(0)
iteration += 1
self.inputs.resize_(inputs.size()).copy_(inputs)
self.target_label.resize_(target_label.size()).copy_(target_label)
self.sensitive_label.resize_(sensitive_label.size()).copy_(sensitive_label)
self.sensitive_label_onehot.resize_([batch_size, self.data.n_sensitive_class])
self.sensitive_label_onehot.zero_()
self.sensitive_label_onehot.scatter_(1, torch.unsqueeze(self.sensitive_label, 1), 1)
self.target_label_onehot.resize_([batch_size, self.data.n_target_class])
self.target_label_onehot.zero_()
self.target_label_onehot.scatter_(1, torch.unsqueeze(self.target_label, 1), 1)
self.batch_uniform.resize_([batch_size, self.data.n_sensitive_class])
self.batch_uniform[:, :] = 1.0/(self.data.n_sensitive_class)
self.batch_uniform.scatter_(1, torch.unsqueeze(self.sensitive_label, 1), 0)
self.optimizer.zero_grad()
_, z, e_prob = self.net(self.inputs)
target_outputs, _, t_prob = self.target_net(z)
t_loss = self.nll_loss(torch.log(t_prob+1e-16), self.target_label)
entropy_loss = torch.tensor(0)
s_loss = torch.tensor(0)
if self.privacy_flag:
d_outputs, _, d_prob = self.discriminator_net(z)
entropy_loss = -self.entropy_loss(d_prob)
if self.privacy_option is 'maxent-arl':
s_loss = -entropy_loss # self.kl_loss(torch.log(self.uniform.repeat(batch_size, 1)), d_prob)
if self.privacy_option is 'ml-arl':
s_loss = -self.nll_loss(torch.log(d_prob+1e-16), self.sensitive_label)
loss = (1-self.alpha)*t_loss + self.alpha*s_loss
else:
loss = t_loss
if not test_flag: # update weights
self.optimizer.zero_grad()
self.target_optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.target_optimizer.step()
# measure accuracy and record loss for learner
t_prec1 = accuracy(t_prob.data, self.target_label.data)
t_prec5 = accuracy(t_prob.data, self.target_label.data, topk=(int(np.min([5, self.n_target_class])),))
self.t_losses.update(t_loss.data.item(), batch_size)
self.e_losses.update(s_loss.data.item(), batch_size)
self.losses.update(loss.data.item(), batch_size)
self.t_top1.update(t_prec1[0], batch_size)
self.t_top5.update(t_prec5[0], batch_size)
self.entropy_losses.update(entropy_loss.data.item(), batch_size)
if self.privacy_flag:
if not test_flag:
self.discriminator_net.train()
d_outputs, _, a_prob = self.discriminator_net(z.detach())
d_loss = self.nll_loss(torch.log(a_prob+1e-16), self.sensitive_label)
if not test_flag:
self.discriminator_optimizer.zero_grad()
d_loss.backward()
self.discriminator_optimizer.step()
d_prec1 = accuracy(a_prob.data, self.sensitive_label.data)
d_prec5 = accuracy(a_prob.data, self.sensitive_label.data, topk=(int(np.min([5, self.n_sensitive_class])),))
self.d_losses.update(d_loss.data.item(), batch_size)
self.d_top1.update(d_prec1[0], batch_size)
self.d_top5.update(d_prec5[0], batch_size)
if iteration % print_interval == 0:
print(string + '_Epoch:[{0}][{1}/{2}] |'
' T_Loss: {3:.2f} |'
' E_Loss: {4:.2f} |'
' Loss: {5:.2f} |'
' T_Prec: {6:.2f} |'
' T_Prec5: {7:.2f} |'
' D_Loss: {8:.2f} |'
' D_Prec: {9:.2f} |'
' D_Prec5: {10:.2f} |'
' D_Entropy: {11:.2f} |'
.format(
epoch, batch_idx, data_size,
float(self.t_losses.avg), float(self.e_losses.avg),
float(self.losses.avg),float(self.t_top1.avg.item()),
float(self.t_top5.avg.item()), float(self.d_losses.avg),
float(self.d_top1.avg.item()), float(self.d_top5.avg.item()),
float(self.entropy_losses.avg)))
else:
if iteration % print_interval == 0:
print(string + '_Epoch:[{0}][{1}/{2}] |'
' T_Loss: {3:.2f} |'
' T_Prec: {4:.2f} |'
' T_Prec5: {5:.2f} |'
.format(
epoch, batch_idx, data_size,
float(self.t_losses.avg), float(self.t_top1.avg.item()),
float(self.t_top5.avg.item())))
return self.losses.avg, self.t_top1.avg, self.t_top5.avg, self.d_losses.avg, self.d_top1.avg, self.d_top5.avg, self.entropy_losses.avg
def train(self):
self.logger = Logger(os.path.join('checkpoint/', self.log_file_name), title='Problem')
self.logger.set_names(['LR', 'Train-Loss', 'Test-Loss', 'Train-Acc.', 'Train-Acc5.', 'Test Acc.', 'Test Acc5.',
'D-Train Loss', 'D-Test Loss', 'D-Train Acc.', 'D-Train Acc5.', 'D-Test Acc.', 'D-Test Acc5.', 'D-Train-Entropy',
'D-Test-Entropy'])
scheduler1 = CosineAnnealingLR(self.optimizer, T_max=self.total_epoch, eta_min=1e-7)
scheduler2 = CosineAnnealingLR(self.discriminator_optimizer, T_max=self.total_epoch, eta_min=1e-6)
for epoch in range(self.start_epoch, self.total_epoch):
print('\nEpoch: %d' % epoch)
scheduler1.step()
scheduler2.step()
train_loss, train_acc, train_acc5, d_train_loss, d_train_acc, d_train_acc5, d_train_entropy = self.perform_epoch(epoch=epoch, test_flag=False)
with torch.no_grad():
test_loss, test_acc, test_acc5, d_test_loss, d_test_acc, d_test_acc5, d_test_entropy = self.perform_epoch(epoch=epoch, test_flag=True)
self.logger.append([self.optimizer.param_groups[0]['lr'], float(train_loss), float(test_loss), float(train_acc), float(train_acc5),
float(test_acc), float(test_acc5), float(d_train_loss), float(d_test_loss), float(d_train_acc), float(d_train_acc5),
float(d_test_acc), float(d_test_acc5), float(d_train_entropy), float(d_test_entropy)])
# it is optimum only when we reach the end of the game by optimization,
# any other value e.g. current discriminator feedback is non-optimal
if (epoch + 1) % 10:
print('Saving..') # Save checkpoint.
state = {
'net': self.net.module if self.use_cuda else self.net,
'state_dict': self.net.state_dict(),
'acc': test_acc,
'epoch': epoch,
'optimizer': self.optimizer.state_dict()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, 'checkpoint/' + self.checkpoint_filename + '.ckpt')
self.best_acc = test_acc
self.best_loss = test_loss
self.logger.close()
print("Done")
def perform_epoch_adversary(self, epoch, test_flag=False):
if test_flag:
self.adv_net.eval()
loader = self.test_loader
str = "Test"
print_interval = self.print_interval_test
else:
self.adv_net.train()
loader = self.train_loader
str = "Train"
print_interval = self.print_interval_train
self.net.eval()
iteration = 0
self.adv_losses.reset()
self.adv_top1.reset()
self.adv_top5.reset()
self.entropy_losses.reset()
for batch_idx, (inputs, target_label, sensitive_label) in enumerate(loader):
batch_size = inputs.size(0)
iteration += 1
if self.data.name == 'mnist':
inputs = torch.unsqueeze(inputs, 1).float()
self.inputs.resize_(inputs.size()).copy_(inputs)
self.target_label.resize_(target_label.size()).copy_(target_label)
self.sensitive_label.resize_(sensitive_label.size()).copy_(sensitive_label)
with torch.no_grad():
outputs, z, _ = self.net(self.inputs)
d_outputs, _, prob = self.adv_net(z.detach())
d_loss = self.cross_entropy_loss(d_outputs, self.sensitive_label)
with torch.no_grad():
entropy_loss = -self.entropy_loss(prob)
if not test_flag:
self.adv_optimizer.zero_grad()
d_loss.backward()
self.adv_optimizer.step()
d_prec1 = accuracy(prob.data, self.sensitive_label.data)
d_prec5 = accuracy(prob.data, self.sensitive_label.data, topk=(int(np.min([5, self.n_sensitive_class])),))
self.adv_losses.update(d_loss.data.item(), batch_size)
self.adv_top1.update(d_prec1[0], batch_size)
self.adv_top5.update(d_prec5[0], batch_size)
self.entropy_losses.update(entropy_loss.data.item(), batch_size)
if iteration % print_interval == 0:
print(str + ' Epoch:[{0}][{1}/{2}] |'
' T_Loss: {3:.5f} |'
' T_Prec: {4:.2f} |'
' T5_Prec: {5:.2f} |'
' Entropy: {6:.3f} |'
.format(
epoch, batch_idx, len(self.train_loader),
float(self.adv_losses.avg), float(self.adv_top1.avg.item()), float(self.adv_top5.avg),
float(self.entropy_losses.avg)))
return self.adv_losses.avg, self.adv_top1.avg, self.adv_top5.avg, self.entropy_losses.avg
def train_adversary(self, model_filename=None, total_epoch=100):
self.adv_logger = Logger(os.path.join('checkpoint/', self.adv_log_file_name), title='Problem')
self.adv_logger.set_names(['LR', 'Train-Loss', 'Test-Loss', 'Train Acc.', 'Train Acc5.', 'Test Acc.', 'Test Acc5.',
'Train Entropy','Test Entropy'])
self.adv_best_acc = 0
scheduler = CosineAnnealingLR(self.adv_optimizer, T_max=total_epoch, eta_min=1e-7)
if model_filename is not None:
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(os.path.join('checkpoint/', model_filename))
self.net = checkpoint['net']
self.net.eval()
for epoch in range(total_epoch):
print('\nEpoch: %d' % epoch)
scheduler.step()
train_loss, train_acc, train_acc5, train_entropy = self.perform_epoch_adversary(epoch=epoch, test_flag=False)
with torch.no_grad():
test_loss, test_acc, test_acc5, test_entropy = self.perform_epoch_adversary(epoch=epoch, test_flag=True)
self.adv_logger.append([self.adv_optimizer.param_groups[0]['lr'], float(train_loss), float(test_loss), float(train_acc),
float(train_acc5), float(test_acc), float(test_acc5), float(train_entropy), float(test_entropy)])
# Save checkpoint.
if test_acc > self.adv_best_acc:
print('Saving..')
state = {
'net': self.adv_net.module if self.use_cuda else self.adv_net,
'state_dict': self.adv_net.state_dict(),
'acc': test_acc,
'epoch': epoch,
'optimizer': self.adv_optimizer.state_dict()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, 'checkpoint/' + self.adv_checkpoint_filename)
self.adv_best_acc = test_acc
self.adv_logger.close()
print("Adversary Done.")
def perform_epoch_target(self, epoch, test_flag=False):
if test_flag:
self.target_net.eval()
loader = self.test_loader
str = "Test"
print_interval = self.print_interval_test
else:
self.target_net.train()
loader = self.train_loader
str = "Train"
print_interval = self.print_interval_train
self.net.eval()
iteration = 0
self.target_losses.reset()
self.target_top1.reset()
self.target_top5.reset()
self.target_entropy_losses.reset()
for batch_idx, (inputs, target_label, sensitive_label) in enumerate(loader):
batch_size = inputs.size(0)
iteration += 1
if self.data.name == 'mnist':
inputs = torch.unsqueeze(inputs, 1).float()
self.inputs.resize_(inputs.size()).copy_(inputs)
self.target_label.resize_(target_label.size()).copy_(target_label)
self.sensitive_label.resize_(sensitive_label.size()).copy_(sensitive_label)
with torch.no_grad():
outputs, z, _ = self.net(self.inputs)
d_outputs, _, prob = self.target_net(z.detach())
d_loss = self.cross_entropy_loss(d_outputs, self.target_label)
with torch.no_grad():
entropy_loss = -self.entropy_loss(prob)
if not test_flag:
self.target_optimizer.zero_grad()
d_loss.backward()
self.target_optimizer.step()
d_prec1 = accuracy(prob.data, self.target_label.data)
d_prec5 = accuracy(prob.data, self.target_label.data, topk=(int(np.min([5, self.n_target_class])),))
self.target_losses.update(d_loss.data.item(), batch_size)
self.target_top1.update(d_prec1[0], batch_size)
self.target_top5.update(d_prec5[0], batch_size)
self.target_entropy_losses.update(entropy_loss.data.item(), batch_size)
if iteration % print_interval == 0:
print(str + ' Epoch:[{0}][{1}/{2}] |'
' T_Loss: {3:.5f} |'
' T_Prec: {4:.2} |'
' T5_Prec: {5:.2f} |'
' Entropy: {6:.3f} |'
.format(
epoch, batch_idx, len(loader),
float(self.target_losses.avg), float(self.target_top1.avg.item()), float(self.target_top5.avg),
float(self.target_entropy_losses.avg)))
return self.target_losses.avg, self.target_top1.avg, self.target_top5.avg, self.target_entropy_losses.avg
def train_target(self, model_filename=None, total_epoch=100):
self.target_logger = Logger(os.path.join('checkpoint/', self.target_log_file_name), title='Problem')
self.target_logger.set_names(['LR', 'Train-Loss', 'Test-Loss', 'Train Acc.', 'Train Acc5.', 'Test Acc.', 'Test Acc5.',
'Train Entropy','Test Entropy'])
self.target_best_acc = 0
scheduler = CosineAnnealingLR(self.target_optimizer, T_max=total_epoch, eta_min=1e-7)
if model_filename is not None:
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(os.path.join('checkpoint/', model_filename))
self.net = checkpoint['net']
self.net.eval()
for epoch in range(total_epoch):
print('\nEpoch: %d' % epoch)
scheduler.step()
train_loss, train_acc, train_acc5, train_entropy = self.perform_epoch_target(epoch=epoch, test_flag=False)
with torch.no_grad():
test_loss, test_acc, test_acc5, test_entropy = self.perform_epoch_target(epoch=epoch, test_flag=True)
self.target_logger.append([self.target_optimizer.param_groups[0]['lr'], float(train_loss), float(test_loss), float(train_acc),
float(train_acc5), float(test_acc), float(test_acc5), float(train_entropy), float(test_entropy)])
if test_acc > self.target_best_acc:
print('Saving..') # Save checkpoint.
state = {
'net': self.target_net.module if self.use_cuda else self.target_net,
'state_dict': self.target_net.state_dict(),
'acc': test_acc,
'epoch': epoch,
'optimizer': self.target_optimizer.state_dict()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, 'checkpoint/' + self.target_checkpoint_filename)
self.target_best_acc = test_acc
self.target_logger.close()
print("Target Done")