forked from Andy-zhujunwen/UNET-ZOO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
304 lines (290 loc) · 14.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
'''
author:zhujunwen
Guangdong University of Technology
'''
import argparse
import logging
import torch
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch import autograd, optim
from UNet import Unet,resnet34_unet
from attention_unet import AttU_Net
from channel_unet import myChannelUnet
from r2unet import R2U_Net
from segnet import SegNet
from unetpp import NestedUNet
from fcn import get_fcn8s
from dataset import *
from metrics import *
from torchvision.transforms import transforms
from plot import loss_plot
from plot import metrics_plot
from torchvision.models import vgg16
def getArgs():
parse = argparse.ArgumentParser()
parse.add_argument('--deepsupervision', default=0)
parse.add_argument("--action", type=str, help="train/test/train&test", default="train&test")
parse.add_argument("--epoch", type=int, default=21)
parse.add_argument('--arch', '-a', metavar='ARCH', default='resnet34_unet',
help='UNet/resnet34_unet/unet++/myChannelUnet/Attention_UNet/segnet/r2unet/fcn32s/fcn8s')
parse.add_argument("--batch_size", type=int, default=1)
parse.add_argument('--dataset', default='driveEye', # dsb2018_256
help='dataset name:liver/esophagus/dsb2018Cell/corneal/driveEye/isbiCell/kaggleLung')
# parse.add_argument("--ckp", type=str, help="the path of model weight file")
parse.add_argument("--log_dir", default='result/log', help="log dir")
parse.add_argument("--threshold",type=float,default=None)
args = parse.parse_args()
return args
def getLog(args):
dirname = os.path.join(args.log_dir,args.arch,str(args.batch_size),str(args.dataset),str(args.epoch))
filename = dirname +'/log.log'
if not os.path.exists(dirname):
os.makedirs(dirname)
logging.basicConfig(
filename=filename,
level=logging.DEBUG,
format='%(asctime)s:%(levelname)s:%(message)s'
)
return logging
def getModel(args):
if args.arch == 'UNet':
model = Unet(3, 1).to(device)
if args.arch == 'resnet34_unet':
model = resnet34_unet(1,pretrained=False).to(device)
if args.arch == 'unet++':
args.deepsupervision = True
model = NestedUNet(args,3,1).to(device)
if args.arch =='Attention_UNet':
model = AttU_Net(3,1).to(device)
if args.arch == 'segnet':
model = SegNet(3,1).to(device)
if args.arch == 'r2unet':
model = R2U_Net(3,1).to(device)
# if args.arch == 'fcn32s':
# model = get_fcn32s(1).to(device)
if args.arch == 'myChannelUnet':
model = myChannelUnet(3,1).to(device)
if args.arch == 'fcn8s':
assert args.dataset !='esophagus' ,"fcn8s模型不能用于数据集esophagus,因为esophagus数据集为80x80,经过5次的2倍降采样后剩下2.5x2.5,分辨率不能为小数,建议把数据集resize成更高的分辨率再用于fcn"
model = get_fcn8s(1).to(device)
if args.arch == 'cenet':
from cenet import CE_Net_
model = CE_Net_().to(device)
return model
def getDataset(args):
train_dataloaders, val_dataloaders ,test_dataloaders= None,None,None
if args.dataset =='liver': #E:\代码\new\u_net_liver-master\data\liver\val
train_dataset = LiverDataset(r"train", transform=x_transforms, target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = LiverDataset(r"val", transform=x_transforms, target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataloaders = val_dataloaders
if args.dataset =="esophagus":
train_dataset = esophagusDataset(r"train", transform=x_transforms,target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = esophagusDataset(r"val", transform=x_transforms,target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataloaders = val_dataloaders
if args.dataset == "dsb2018Cell":
train_dataset = dsb2018CellDataset(r"train", transform=x_transforms, target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = dsb2018CellDataset(r"val", transform=x_transforms, target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataloaders = val_dataloaders
if args.dataset == 'corneal':
train_dataset = CornealDataset(r'train',transform=x_transforms, target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = CornealDataset(r"val", transform=x_transforms, target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataset = CornealDataset(r"test", transform=x_transforms, target_transform=y_transforms)
test_dataloaders = DataLoader(test_dataset, batch_size=1)
if args.dataset == 'driveEye':
train_dataset = DriveEyeDataset(r'train', transform=x_transforms, target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = DriveEyeDataset(r"val", transform=x_transforms, target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataset = DriveEyeDataset(r"test", transform=x_transforms, target_transform=y_transforms)
test_dataloaders = DataLoader(test_dataset, batch_size=1)
if args.dataset == 'isbiCell':
train_dataset = IsbiCellDataset(r'train', transform=x_transforms, target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = IsbiCellDataset(r"val", transform=x_transforms, target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataset = IsbiCellDataset(r"test", transform=x_transforms, target_transform=y_transforms)
test_dataloaders = DataLoader(test_dataset, batch_size=1)
if args.dataset == 'kaggleLung':
train_dataset = LungKaggleDataset(r'train', transform=x_transforms, target_transform=y_transforms)
train_dataloaders = DataLoader(train_dataset, batch_size=args.batch_size)
val_dataset = LungKaggleDataset(r"val", transform=x_transforms, target_transform=y_transforms)
val_dataloaders = DataLoader(val_dataset, batch_size=1)
test_dataset = LungKaggleDataset(r"test", transform=x_transforms, target_transform=y_transforms)
test_dataloaders = DataLoader(test_dataset, batch_size=1)
return train_dataloaders,val_dataloaders,test_dataloaders
def val(model,best_iou,val_dataloaders):
model= model.eval()
with torch.no_grad():
i=0 #验证集中第i张图
miou_total = 0
hd_total = 0
dice_total = 0
num = len(val_dataloaders) #验证集图片的总数
#print(num)
for x, _,pic,mask in val_dataloaders:
x = x.to(device)
y = model(x)
if args.deepsupervision:
img_y = torch.squeeze(y[-1]).cpu().numpy()
else:
img_y = torch.squeeze(y).cpu().numpy() #输入损失函数之前要把预测图变成numpy格式,且为了跟训练图对应,要额外加多一维表示batchsize
hd_total += get_hd(mask[0], img_y)
miou_total += get_iou(mask[0],img_y) #获取当前预测图的miou,并加到总miou中
dice_total += get_dice(mask[0],img_y)
if i < num:i+=1 #处理验证集下一张图
aver_iou = miou_total / num
aver_hd = hd_total / num
aver_dice = dice_total/num
print('Miou=%f,aver_hd=%f,aver_dice=%f' % (aver_iou,aver_hd,aver_dice))
logging.info('Miou=%f,aver_hd=%f,aver_dice=%f' % (aver_iou,aver_hd,aver_dice))
if aver_iou > best_iou:
print('aver_iou:{} > best_iou:{}'.format(aver_iou,best_iou))
logging.info('aver_iou:{} > best_iou:{}'.format(aver_iou,best_iou))
logging.info('===========>save best model!')
best_iou = aver_iou
print('===========>save best model!')
torch.save(model.state_dict(), r'./saved_model/'+str(args.arch)+'_'+str(args.batch_size)+'_'+str(args.dataset)+'_'+str(args.epoch)+'.pth')
return best_iou,aver_iou,aver_dice,aver_hd
def train(model, criterion, optimizer, train_dataloader,val_dataloader, args):
best_iou,aver_iou,aver_dice,aver_hd = 0,0,0,0
num_epochs = args.epoch
threshold = args.threshold
loss_list = []
iou_list = []
dice_list = []
hd_list = []
for epoch in range(num_epochs):
model = model.train()
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
logging.info('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
dt_size = len(train_dataloader.dataset)
epoch_loss = 0
step = 0
for x, y,_,mask in train_dataloader:
step += 1
inputs = x.to(device)
labels = y.to(device)
# zero the parameter gradients
optimizer.zero_grad()
if args.deepsupervision:
outputs = model(inputs)
loss = 0
for output in outputs:
loss += criterion(output, labels)
loss /= len(outputs)
else:
output = model(inputs)
loss = criterion(output, labels)
if threshold!=None:
if loss > threshold:
loss.backward()
optimizer.step()
epoch_loss += loss.item()
else:
loss.backward()
optimizer.step()
epoch_loss += loss.item()
print("%d/%d,train_loss:%0.3f" % (step, (dt_size - 1) // train_dataloader.batch_size + 1, loss.item()))
logging.info("%d/%d,train_loss:%0.3f" % (step, (dt_size - 1) // train_dataloader.batch_size + 1, loss.item()))
loss_list.append(epoch_loss)
best_iou,aver_iou,aver_dice,aver_hd = val(model,best_iou,val_dataloader)
iou_list.append(aver_iou)
dice_list.append(aver_dice)
hd_list.append(aver_hd)
print("epoch %d loss:%0.3f" % (epoch, epoch_loss))
logging.info("epoch %d loss:%0.3f" % (epoch, epoch_loss))
loss_plot(args, loss_list)
metrics_plot(args, 'iou&dice',iou_list, dice_list)
metrics_plot(args,'hd',hd_list)
return model
def test(val_dataloaders,save_predict=False):
logging.info('final test........')
if save_predict ==True:
dir = os.path.join(r'./saved_predict',str(args.arch),str(args.batch_size),str(args.epoch),str(args.dataset))
if not os.path.exists(dir):
os.makedirs(dir)
else:
print('dir already exist!')
model.load_state_dict(torch.load(r'./saved_model/'+str(args.arch)+'_'+str(args.batch_size)+'_'+str(args.dataset)+'_'+str(args.epoch)+'.pth', map_location='cpu')) # 载入训练好的模型
model.eval()
#plt.ion() #开启动态模式
with torch.no_grad():
i=0 #验证集中第i张图
miou_total = 0
hd_total = 0
dice_total = 0
num = len(val_dataloaders) #验证集图片的总数
for pic,_,pic_path,mask_path in val_dataloaders:
pic = pic.to(device)
predict = model(pic)
if args.deepsupervision:
predict = torch.squeeze(predict[-1]).cpu().numpy()
else:
predict = torch.squeeze(predict).cpu().numpy() #输入损失函数之前要把预测图变成numpy格式,且为了跟训练图对应,要额外加多一维表示batchsize
#img_y = torch.squeeze(y).cpu().numpy() #输入损失函数之前要把预测图变成numpy格式,且为了跟训练图对应,要额外加多一维表示batchsize
iou = get_iou(mask_path[0],predict)
miou_total += iou #获取当前预测图的miou,并加到总miou中
hd_total += get_hd(mask_path[0], predict)
dice = get_dice(mask_path[0],predict)
dice_total += dice
fig = plt.figure()
ax1 = fig.add_subplot(1, 3, 1)
ax1.set_title('input')
plt.imshow(Image.open(pic_path[0]))
#print(pic_path[0])
ax2 = fig.add_subplot(1, 3, 2)
ax2.set_title('predict')
plt.imshow(predict,cmap='Greys_r')
ax3 = fig.add_subplot(1, 3, 3)
ax3.set_title('mask')
plt.imshow(Image.open(mask_path[0]), cmap='Greys_r')
#print(mask_path[0])
if save_predict == True:
if args.dataset == 'driveEye':
saved_predict = dir + '/' + mask_path[0].split('\\')[-1]
saved_predict = '.'+saved_predict.split('.')[1] + '.tif'
plt.savefig(saved_predict)
else:
plt.savefig(dir +'/'+ mask_path[0].split('\\')[-1])
#plt.pause(0.01)
print('iou={},dice={}'.format(iou,dice))
if i < num:i+=1 #处理验证集下一张图
#plt.show()
print('Miou=%f,aver_hd=%f,dv=%f' % (miou_total/num,hd_total/num,dice_total/num))
logging.info('Miou=%f,aver_hd=%f,dv=%f' % (miou_total/num,hd_total/num,dice_total/num))
#print('M_dice=%f' % (dice_total / num))
if __name__ =="__main__":
x_transforms = transforms.Compose([
transforms.ToTensor(), # -> [0,1]
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) # ->[-1,1]
])
# mask只需要转换为tensor
y_transforms = transforms.ToTensor()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
args = getArgs()
logging = getLog(args)
print('**************************')
print('models:%s,\nepoch:%s,\nbatch size:%s\ndataset:%s' % \
(args.arch, args.epoch, args.batch_size,args.dataset))
logging.info('\n=======\nmodels:%s,\nepoch:%s,\nbatch size:%s\ndataset:%s\n========' % \
(args.arch, args.epoch, args.batch_size,args.dataset))
print('**************************')
model = getModel(args)
train_dataloaders,val_dataloaders,test_dataloaders = getDataset(args)
criterion = torch.nn.BCELoss()
optimizer = optim.Adam(model.parameters())
if 'train' in args.action:
train(model, criterion, optimizer, train_dataloaders,val_dataloaders, args)
if 'test' in args.action:
test(test_dataloaders, save_predict=True)