-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
417 lines (395 loc) · 18.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Stem-Ob: Generalizable Visual Imitation Learning with Stem-Like Convergent Observation through Diffusion Inversion">
<meta name="keywords" content="">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Stem-Ob: Generalizable Visual Imitation Learning with Stem-Like Convergent Observation through Diffusion
Inversion</title>
<!-- Thumbnail for social media sharing -->
<meta property="og:image" content="media/figures/thumbnail.png">
<!-- TODO -->
<!-- Favicon -->
<link rel="icon" href="media/figures/thumbnail.png" type="image/png">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="stylesheet" href="./static/source_serif_4.css">
<link rel="stylesheet" href="./static/source_sans_3.css">
<link rel="stylesheet" href="./static/academicons.min.css">
<link rel="stylesheet" href="./static/fontawesome/css/fontawesome.css">
<link rel="stylesheet" href="./static/fontawesome/css/brands.css">
<link rel="stylesheet" href="./static/fontawesome/css/light.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<section class="hero">
<div class="hero-body">
<div class="container is-fullhd">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">
Stem-Ob: Generalizable Visual Imitation Learning with Stem-Like Convergent Observation through Diffusion
Inversion
</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a target="_blank" href="https://hukz18.github.io/">Kaizhe Hu</a><sup>123*</sup>,
</span>
<span class="author-block">
<a target="_blank" href="https://github.com/UFishs/">Zihang Rui</a><sup>1*</sup>,
</span>
<span class="author-block">
<a target="_blank" href="https://shockwavehe.github.io/">Yao He</a><sup>4</sup>,
</span>
<span class="author-block">
<a target="_blank" href="https://yuyaoliu.me/">Yuyao Liu</a><sup>1</sup>,
</span>
<span class="author-block">
<a target="_blank" href="https://piao-0429.github.io/">Pu Hua</a><sup>123</sup>,
</span>
<span class="author-block">
<a target="_blank" href="http://hxu.rocks/">Huazhe Xu</a><sup>123</sup>
</span>
</div>
<div class="logos">
<img src="./media/logos/tsinghua.png" alt="Tsinghua Logo" class="logo">
<img src="./media/logos/sqz.png" alt="Shanghai Qizhi Institute Logo" class="logo">
<img src="./media/logos/sail.png" alt="SAIL Logo" class="logo">
<img src="./media/logos/stanford.png" alt="Stanford Logo" class="logo">
<!-- Add more logos as needed -->
</div>
<div class="is-size-5 affiliation">
<sup>1</sup>Tsinghua University
<sup>2</sup>Shanghai Qizhi Institute
<sup>3</sup>Shanghai Artificial Intelligence Laboratory
<sup>4</sup>Stanford University
<sup></sup>
</div>
<br>
<div class="affiliation-note">
<sup>*</sup> Equal contribution
</div>
<div class="button-container">
<span class="link-block">
<a href="./stem-ob.pdf"
target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>PDF</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/hukz18/Stem-Ob-Code"
target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2411.04919"
target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>ArXiv</span>
</a>
</span>
<!-- youtube -->
<span class="link-block">
<a href="https://youtu.be/dgXJmaAETV0"
target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span>
<!-- twitter -->
<span class="link-block">
<a href="https://twitter.com/hkz222/status/1854780743685460235?s=19"
target="_blank" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-twitter"></i>
</span>
<span>Tweeter</span>
</a>
</span>
<!-- click to copy Citation -->
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-widescreen">
<div class="hero-body">
<div class="container">
<div class="columns is-vcentered is-centered">
<img src="media/figures/teaser.png" class="teaser-image" />
</div>
</div>
</div>
</div>
<div class="container is-max-widescreen">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Visual imitation learning methods demonstrate strong performance, yet they lack generalization when faced
with visual input perturbations, including variations in lighting and textures, impeding their real-world
application. We propose Stem-Ob that utilizes pretrained image diffusion models to suppress low-level visual
differences while maintaining high-level scene structures. This image inversion process is akin to
transforming the observation into a shared representation, from which other observations stem, with
extraneous details removed. Stem-Ob contrasts with data-augmentation approaches as it is robust to various
unspecified appearance changes without the need for additional training. Our method is a simple yet highly
effective plug-and-play solution. Empirical results confirm the effectiveness of our approach in simulated
tasks and show an exceptionally significant improvement in real-world applications, with an average increase
of 22.2% in success rates compared to the best baseline.
</p>
</div>
</div>
</div>
<hr class="rounded">
<div class="rows">
<h2 class="title is-3">Overview of Stem-Ob</h2>
<div class="columns is-centered has-text-centered">
<iframe width="1120" height="630" src="https://www.youtube.com/embed/dgXJmaAETV0?si=TVpetTAVA554-ART"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
</iframe>
</div>
<h2 class="title is-3">Pipeline of Stem-Ob</h2>
<img src="media/figures/pipeline.png" class="method-image" />
<p class="content has-text-justified">
<div class="formula">
<p><strong>(a)</strong> Our method has been evaluated in both real-world and simulated environments.
<strong>(b)</strong> The trained visual IL policies are directly applied to the original observation space \(
\mathcal{O} \), demonstrating robustness to unseen environmental disturbances. <strong>(c)</strong> We train
the visual IL policy \( \boldsymbol{\pi} \) on the diffusion-inversed latent space \(
\hat{\mathcal{O}}^{\hat{t}/T} \), where \( \hat{t} \) denotes a specific inversion step out of a total of \( T
\). Each composite rectangle in the diffusion inversion process, made up of three smaller sections, represents
the latent vector of an image, with finer attributes (gray) depicted as the smaller section. During the
inversion process, finer attributes converge earlier than coarser ones.
</p>
</div>
</p>
</div>
<hr class="rounded">
<div class="rows">
<h2 class="title is-3">Real-World Experiments</h2>
<hr class="rounded">
<h2 class="title is-4">Experiment Setup</h2>
<img src="media/figures/real-world_setup_overview.png" class="method-image" />
<p class="content has-text-justified">
<div class="formula">
<p><strong>(a)</strong> Overview of the whole setup. <strong>(b)(c)</strong> These tasks are performed by the
robot in a real-world environment, from left to right: <strong><em>Cup2Plate</em></strong>, <strong><em>Turn
on Faucet</em></strong>, <strong><em>Open Drawer</em></strong>, and <strong><em>Duck2Bowl</em></strong>.
The figure showcases the initial and final states of the tasks.</p>
</div>
</p>
<hr class="rounded">
<h2 class="title is-4">Experiment Results</h2>
<div class="columns is-centered has-text-centered">
<div class="column">
<img src="media/figures/real-world_results.png" class="method-image" />
</div>
</div>
<p class="content has-text-justified">
<div class="formula">
<p><strong>Evaluation of real-world experiments.</strong> Train.: evaluations in the same settings as the
training dataset. Gen.: evaluations under different visual perturbations for generalizability analysis. All:
evaluations including both Train. and Gen. The tasks are <strong>C2P</strong> (<strong><em>Cup to
Plate</em></strong>), <strong>D2B</strong> (<strong><em>Duck to Bowl</em></strong>), <strong>OD</strong>
(<strong><em>Open Drawer</em></strong>), and <strong>ToF</strong> (<strong><em>Turn on Faucet</em></strong>).
We report the mean and standard deviation of the success rate (%) over 6 settings for each task, and the best
results are highlighted in <strong>bold</strong>.</p>
</div>
</p>
</div>
<hr class="rounded">
<div class="rows">
<h2 class="title is-4">Visualization</h2>
<h3 class="title is-5">Cup to Plate</h3>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/cup_trainW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/cup_trainC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/cup_cubeW.mp4" type="video/mp4">
</video>
</div>
</div>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/cup_cubeC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/cup_leafW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/cup_leafC.mp4" type="video/mp4">
</video>
</div>
</div>
<h3 class="title is-5">Duck to Bowl</h3>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/duck_trainW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/duck_trainC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/duck_redW.mp4" type="video/mp4">
</video>
</div>
</div>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/duck_redC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/duck_blueW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/duck_blueC.mp4" type="video/mp4">
</video>
</div>
</div>
<h3 class="title is-5">Open Drawer</h3>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/drawer_trainW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/drawer_trainC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/drawer_goldW.mp4" type="video/mp4">
</video>
</div>
</div>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/drawer_goldC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/drawer_paintW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/drawer_paintC.mp4" type="video/mp4">
</video>
</div>
</div>
<h3 class="title is-5">Turn on Faucet</h3>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/faucet_trainW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/faucet_trainC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/faucet_testW.mp4" type="video/mp4">
</video>
</div>
</div>
<div class="columns">
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/faucet_testC.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/faucet_paintW.mp4" type="video/mp4">
</video>
</div>
<div class="column has-text-centered">
<video id="dist1" controls autoplay loop muted width="100%">
<source src="media/videos/faucet_paintC.mp4" type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column">
<div class="content has-text-centered">
<p>
Website template borrowed from <a href="https://nerfies.github.io">Nerfies</a>.
</p>
<p>
This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"> Creative Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a
href="https://github.com/hukz18/stem-ob">source code</a> of this website,
we just ask that you link back to this page in the footer.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>