-
Notifications
You must be signed in to change notification settings - Fork 472
/
utils.py
203 lines (169 loc) · 7.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import re
import shutil
from dataclasses import field
from pathlib import Path
from typing import Dict, List
import torch
from datasets import concatenate_datasets, load_from_disk
from wandb import Audio
from datasets import load_from_disk, concatenate_datasets
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
_RE_CHECKPOINT = re.compile(r"^checkpoint-(\d+)-epoch-(\d+)$")
CHECKPOINT_CODEC_PREFIX = "checkpoint"
_RE_CODEC_CHECKPOINT = re.compile(r"^checkpoint-(\d+)$")
def get_last_checkpoint(folder):
content = os.listdir(folder)
checkpoints = [
path
for path in content
if _RE_CHECKPOINT.search(path) is not None and os.path.isdir(os.path.join(folder, path))
]
if len(checkpoints) == 0:
return
return os.path.join(folder, max(checkpoints, key=lambda x: int(_RE_CHECKPOINT.search(x).groups()[0])))
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint") -> List[str]:
"""Helper function to sort saved checkpoints from oldest to newest."""
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
for path in glob_checkpoints:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def rotate_checkpoints(save_total_limit=None, output_dir=None, checkpoint_prefix="checkpoint", logger=None) -> None:
"""Helper function to delete old checkpoints."""
if save_total_limit is None or save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = sorted_checkpoints(output_dir=output_dir, checkpoint_prefix=checkpoint_prefix)
if len(checkpoints_sorted) <= save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit")
shutil.rmtree(checkpoint, ignore_errors=True)
def save_codec_checkpoint(output_dir, dataset, step):
checkpoint_path = f"{CHECKPOINT_CODEC_PREFIX}-{step}"
output_path = os.path.join(output_dir, checkpoint_path)
dataset.save_to_disk(output_path)
def load_codec_checkpoint(checkpoint_path):
dataset = load_from_disk(checkpoint_path)
return dataset
def sorted_codec_checkpoints(output_dir=None) -> List[str]:
"""Helper function to sort saved checkpoints from oldest to newest."""
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{CHECKPOINT_CODEC_PREFIX}-*")]
for path in glob_checkpoints:
regex_match = re.match(f".*{CHECKPOINT_CODEC_PREFIX}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def load_all_codec_checkpoints(output_dir=None) -> List[str]:
"""Helper function to load and concat all checkpoints."""
checkpoints_sorted = sorted_codec_checkpoints(output_dir=output_dir)
datasets = [load_from_disk(checkpoint) for checkpoint in checkpoints_sorted]
datasets = concatenate_datasets(datasets, axis=0)
return datasets
def get_last_codec_checkpoint_step(folder) -> int:
if not os.path.exists(folder) or not os.path.isdir(folder):
os.makedirs(folder, exist_ok=True)
return 0
content = os.listdir(folder)
checkpoints = [path for path in content if _RE_CODEC_CHECKPOINT.search(path) is not None]
if len(checkpoints) == 0:
return 0
last_checkpoint = os.path.join(
folder, max(checkpoints, key=lambda x: int(_RE_CODEC_CHECKPOINT.search(x).groups()[0]))
)
# Find num steps saved state string pattern
pattern = r"checkpoint-(\d+)"
match = re.search(pattern, last_checkpoint)
cur_step = int(match.group(1))
return cur_step
def log_metric(
accelerator,
metrics: Dict,
train_time: float,
step: int,
epoch: int,
learning_rate: float = None,
prefix: str = "train",
):
"""Helper function to log all training/evaluation metrics with the correct prefixes and styling."""
log_metrics = {}
for k, v in metrics.items():
if "codebook" in k:
log_metrics[f"codebook_{prefix}/{k}"] = v
else:
log_metrics[f"{prefix}/{k}"] = v
log_metrics[f"{prefix}/time"] = train_time
log_metrics[f"{prefix}/epoch"] = epoch
if learning_rate is not None:
log_metrics[f"{prefix}/learning_rate"] = learning_rate
accelerator.log(log_metrics, step=step)
def log_pred(
accelerator,
pred_descriptions: List[str],
pred_prompts: List[str],
transcriptions: List[str],
audios: List[torch.Tensor],
si_sdr_measures: List[float],
sampling_rate: int,
step: int,
prefix: str = "eval",
num_lines: int = 200000,
):
"""Helper function to log target/predicted transcriptions to weights and biases (wandb)."""
if accelerator.is_main_process:
wandb_tracker = accelerator.get_tracker("wandb")
# pretty name for current step: step 50000 -> step 50k
cur_step_pretty = f"{int(step // 1000)}k" if step > 1000 else step
prefix_pretty = prefix.replace("/", "-")
if si_sdr_measures is None:
# convert str data to a wandb compatible format
str_data = [
[pred_descriptions[i], pred_prompts[i], transcriptions[i]] for i in range(len(pred_descriptions))
]
# log as a table with the appropriate headers
wandb_tracker.log_table(
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
columns=["Target descriptions", "Target prompts", "Predicted transcriptions"],
data=str_data[:num_lines],
step=step,
commit=False,
)
else:
# convert str data to a wandb compatible format
str_data = [
[pred_descriptions[i], pred_prompts[i], transcriptions[i], si_sdr_measures[i]]
for i in range(len(pred_descriptions))
]
# log as a table with the appropriate headers
wandb_tracker.log_table(
table_name=f"predictions/{prefix_pretty}-step-{cur_step_pretty}",
columns=["Target descriptions", "Target prompts", "Predicted transcriptions", "Noise estimation"],
data=str_data[:num_lines],
step=step,
commit=False,
)
# wandb can only loads 100 audios per step
wandb_tracker.log(
{
"Speech samples": [
Audio(
audio,
caption=f"{pred_prompts[i]} --- DESCRIPTION: {pred_descriptions[i]}",
sample_rate=sampling_rate,
)
for (i, audio) in enumerate(audios[: min(len(audios), 100)])
]
},
step=step,
)