diff --git a/examples/summarization.ipynb b/examples/summarization.ipynb index 75e3d0ea..454bbf53 100644 --- a/examples/summarization.ipynb +++ b/examples/summarization.ipynb @@ -213,7 +213,7 @@ "from evaluate import load\n", "\n", "raw_datasets = load_dataset(\"xsum\")\n", - "metric = load(\"rouge\")" + "rouge = load(\"rouge\")" ] }, { @@ -409,7 +409,7 @@ "id": "lnjDIuQ3IrI-" }, "source": [ - "The metric is an instance of [`datasets.Metric`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Metric):" + "The rouge is a metric and is an instance of [`evaluate.Metric`](https://huggingface.co/docs/evaluate/main/en/package_reference/main_classes#evaluate.Metric):" ] }, { @@ -461,7 +461,7 @@ } ], "source": [ - "metric" + "rouge" ] }, { @@ -496,7 +496,7 @@ "source": [ "fake_preds = [\"hello there\", \"general kenobi\"]\n", "fake_labels = [\"hello there\", \"general kenobi\"]\n", - "metric.compute(predictions=fake_preds, references=fake_labels)" + "rouge.compute(predictions=fake_preds, references=fake_labels)" ] }, { @@ -904,7 +904,7 @@ " \n", " # Note that other metrics may not have a `use_aggregator` parameter\n", " # and thus will return a list, computing a metric for each sentence.\n", - " result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True, use_aggregator=True)\n", + " result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True, use_aggregator=True)\n", " # Extract a few results\n", " result = {key: value * 100 for key, value in result.items()}\n", " \n",