diff --git a/examples/dreambooth/train_dreambooth_lora_sd3.py b/examples/dreambooth/train_dreambooth_lora_sd3.py index 78eae4499ad2..097eaed8b504 100644 --- a/examples/dreambooth/train_dreambooth_lora_sd3.py +++ b/examples/dreambooth/train_dreambooth_lora_sd3.py @@ -29,7 +29,7 @@ import torch import torch.utils.checkpoint import transformers -from accelerate import Accelerator +from accelerate import Accelerator, DistributedType from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder @@ -1292,11 +1292,17 @@ def save_model_hook(models, weights, output_dir): text_encoder_two_lora_layers_to_save = None for model in models: - if isinstance(model, type(unwrap_model(transformer))): + if isinstance(unwrap_model(model), type(unwrap_model(transformer))): + model = unwrap_model(model) + if args.upcast_before_saving: + model = model.to(torch.float32) transformer_lora_layers_to_save = get_peft_model_state_dict(model) - elif isinstance(model, type(unwrap_model(text_encoder_one))): # or text_encoder_two + elif args.train_text_encoder and isinstance( + unwrap_model(model), type(unwrap_model(text_encoder_one)) + ): # or text_encoder_two # both text encoders are of the same class, so we check hidden size to distinguish between the two - hidden_size = unwrap_model(model).config.hidden_size + model = unwrap_model(model) + hidden_size = model.config.hidden_size if hidden_size == 768: text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model) elif hidden_size == 1280: @@ -1305,7 +1311,8 @@ def save_model_hook(models, weights, output_dir): raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again - weights.pop() + if weights: + weights.pop() StableDiffusion3Pipeline.save_lora_weights( output_dir, @@ -1319,17 +1326,31 @@ def load_model_hook(models, input_dir): text_encoder_one_ = None text_encoder_two_ = None - while len(models) > 0: - model = models.pop() + if not accelerator.distributed_type == DistributedType.DEEPSPEED: + while len(models) > 0: + model = models.pop() - if isinstance(model, type(unwrap_model(transformer))): - transformer_ = model - elif isinstance(model, type(unwrap_model(text_encoder_one))): - text_encoder_one_ = model - elif isinstance(model, type(unwrap_model(text_encoder_two))): - text_encoder_two_ = model - else: - raise ValueError(f"unexpected save model: {model.__class__}") + if isinstance(unwrap_model(model), type(unwrap_model(transformer))): + transformer_ = unwrap_model(model) + elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_one))): + text_encoder_one_ = unwrap_model(model) + elif isinstance(unwrap_model(model), type(unwrap_model(text_encoder_two))): + text_encoder_two_ = unwrap_model(model) + else: + raise ValueError(f"unexpected save model: {model.__class__}") + + else: + transformer_ = SD3Transformer2DModel.from_pretrained( + args.pretrained_model_name_or_path, subfolder="transformer" + ) + transformer_.add_adapter(transformer_lora_config) + if args.train_text_encoder: + text_encoder_one_ = text_encoder_cls_one.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder" + ) + text_encoder_two_ = text_encoder_cls_two.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder_2" + ) lora_state_dict = StableDiffusion3Pipeline.lora_state_dict(input_dir) @@ -1829,7 +1850,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): progress_bar.update(1) global_step += 1 - if accelerator.is_main_process: + if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: