-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdata.py
242 lines (206 loc) · 8 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from skimage import io, transform
import os
import numpy as np
from PIL import Image
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import scipy.io as sio
import PIL
import torchvision.transforms.functional as TF
import random
class SGNDataset(data.Dataset):
def __init__(self, args):
super(SGNDataset, self).__init__()
self.img_root = args.img_root
self.isEnhancer = args.isEnhancer
self.image_list = open(self.img_root + "/train_images.txt").readlines()
self.attribute_list = open(self.img_root + "/train_attributes.txt").readlines()
self.segmentation_list = open(self.img_root + "/train_segmentations.txt").readlines()
self.nnsegmentation_list = open(self.img_root + "/train_nnsegmentations.txt").readlines()
self.data = self._load_dataset()
def _load_dataset(self):
output = []
images = self.image_list
i = 0
for i, img_path in enumerate(images):
output.append({
'img': self.img_root + self.image_list[i][:-1],
'att': self.img_root + self.attribute_list[i][:-1],
'seg': self.img_root + self.segmentation_list[i][:-1],
'nnseg': self.img_root + self.nnsegmentation_list[i][:-1]
})
i = i + 1
print(str(i) + " of" + str(len(images)) + "\n")
return output
def _colorencode(self, category_im):
colorcodes = sio.loadmat(self.img_root + "/color150.mat")
colorcodes = colorcodes['colors']
idx = np.unique(category_im)
h, w = category_im.shape
colorCodeIm = np.zeros((h, w, 3)).astype(np.uint8)
for i in range(idx.shape[0]):
if idx[i] == 0:
continue
b = np.where(category_im == idx[i])
rgb = colorcodes[idx[i] - 1]
bgr = rgb[::-1]
colorCodeIm[b] = bgr
return colorCodeIm
def _binaryencode(self, category_im):
binarycodes = sio.loadmat(self.img_root + "/binarycodes.mat")
binarycodes = binarycodes['binarycodes']
idx = np.unique(category_im)
h, w = category_im.shape
binaryCodeIm = np.zeros((h, w, 8)).astype(np.uint8)
for i in range(idx.shape[0]):
if idx[i] == 0:
continue
b = np.where(category_im == idx[i])
binaryCodeIm[b] = binarycodes[idx[i] - 1]
return binaryCodeIm
def transform(self, image, seg, nnseg):
# Resize
resize = transforms.Resize(512)
image = resize(image)
resize = transforms.Resize(512, interpolation=PIL.Image.NEAREST)
seg = resize(seg)
resize = transforms.Resize(512, interpolation=PIL.Image.NEAREST)
nnseg = resize(nnseg)
# Random crop
#i, j, h, w = transforms.RandomCrop.get_params(
# image, output_size=(256, 256))
#image = TF.crop(image, i, j, h, w)
#seg = TF.crop(seg, i, j, h, w)
# Center crop
crop = transforms.CenterCrop((512, 512))
image = crop(image)
seg = crop(seg)
nnseg = crop(nnseg)
if not self.isEnhancer:
# Resize
resize2 = transforms.Resize(256)
image = resize2(image)
resize2 = transforms.Resize(256, interpolation=PIL.Image.NEAREST)
seg = resize2(seg)
resize2 = transforms.Resize(256, interpolation=PIL.Image.NEAREST)
nnseg = resize2(nnseg)
# Random horizontal flipping
if random.random() > 0.5:
image = TF.hflip(image)
seg = TF.hflip(seg)
nnseg = TF.hflip(nnseg)
# Random vertical flipping
#if random.random() > 0.5:
# image = TF.vflip(image)
# seg = TF.vflip(seg)
cat = np.array(seg)
#seg = self._colorencode(cat)
seg = self._binaryencode(cat)
seg = np.transpose(seg, (2, 0, 1))
catnn = np.array(nnseg)
#seg = self._colorencode(cat)
nnseg = self._binaryencode(catnn)
nnseg = np.transpose(nnseg, (2, 0, 1))
# Transform to tensor
image = TF.to_tensor(image)
seg = torch.tensor(seg)
nnseg = torch.tensor(nnseg)
cat = torch.tensor(cat)
return image, seg, cat, nnseg
def __len__(self):
return len(self.data)
def __getitem__(self, index):
datum = self.data[index]
img = Image.open(datum['img'])
att = np.load(datum['att']).astype(np.float32)
seg = Image.open(datum['seg'])
nnseg = Image.open(datum['nnseg'])
img, seg, cat, nnseg = self.transform(img, seg, nnseg)
if img.size(0) == 1:
img = img.repeat(3, 1, 1)
return img, att, seg, cat, nnseg
class SGNDatasetTest(data.Dataset):
def __init__(self, args):
super(SGNDatasetTest, self).__init__()
self.img_root = args.img_root
self.isEnhancer = args.isEnhancer
self.image_list = open(self.img_root + "/val_images.txt").readlines()
self.attribute_list = open(self.img_root + "/val_attributes.txt").readlines()
self.segmentation_list = open(self.img_root + "/val_segmentations.txt").readlines()
self.data = self._load_dataset()
def _load_dataset(self):
output = []
images = self.image_list
i = 0
for i, img_path in enumerate(images):
output.append({
'img': self.img_root + self.image_list[i][:-1],
'att': self.img_root + self.attribute_list[i][:-1],
'seg': self.img_root + self.segmentation_list[i][:-1]
})
i = i + 1
print(str(i) + " of" + str(len(images)) + "\n")
return output
def _colorencode(self, category_im):
colorcodes = sio.loadmat(self.img_root + "./color150.mat")
colorcodes = colorcodes['colors']
idx = np.unique(category_im)
h, w = category_im.shape
colorCodeIm = np.zeros((h, w, 3)).astype(np.uint8)
for i in range(idx.shape[0]):
if idx[i] == 0:
continue
b = np.where(category_im == idx[i])
rgb = colorcodes[idx[i] - 1]
bgr = rgb[::-1]
colorCodeIm[b] = bgr
return colorCodeIm
def _binaryencode(self, category_im):
binarycodes = sio.loadmat(self.img_root + "binarycodes.mat")
binarycodes = binarycodes['binarycodes']
idx = np.unique(category_im)
h, w = category_im.shape
binaryCodeIm = np.zeros((h, w, 8)).astype(np.uint8)
for i in range(idx.shape[0]):
if idx[i] == 0:
continue
b = np.where(category_im == idx[i])
binaryCodeIm[b] = binarycodes[idx[i] - 1]
return binaryCodeIm
def transform(self, image, seg):
# Resize
resize = transforms.Resize(512)
image = resize(image)
resize = transforms.Resize(512, interpolation=PIL.Image.NEAREST)
seg = resize(seg)
# Center crop
crop = transforms.CenterCrop((512, 512))
image = crop(image)
seg = crop(seg)
if not self.isEnhancer:
# Resize
resize2 = transforms.Resize(256)
image = resize2(image)
resize2 = transforms.Resize(256, interpolation=PIL.Image.NEAREST)
seg = resize2(seg)
cat = np.array(seg)
#seg = self._colorencode(cat)
seg = self._binaryencode(cat)
seg = np.transpose(seg, (2, 0, 1))
# Transform to tensor
image = TF.to_tensor(image)
seg = torch.tensor(seg)
cat = torch.tensor(cat)
return image, seg, cat
def __len__(self):
return len(self.data)
def __getitem__(self, index):
datum = self.data[index]
img = Image.open(datum['img'])
att = np.load(datum['att']).astype(np.float32)
seg = Image.open(datum['seg'])
img, seg, cat = self.transform(img, seg)
if img.size(0) == 1:
img = img.repeat(3, 1, 1)
return img, att, seg, cat