-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtm-m68000.h
1020 lines (851 loc) · 38.7 KB
/
tm-m68000.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
Copyright (C) 1987 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY. No author or distributor
accepts responsibility to anyone for the consequences of using it
or for whether it serves any particular purpose or works at all,
unless he says so in writing. Refer to the GNU CC General Public
License for full details.
Everyone is granted permission to copy, modify and redistribute
GNU CC, but only under the conditions described in the
GNU CC General Public License. A copy of this license is
supposed to have been given to you along with GNU CC so you
can know your rights and responsibilities. It should be in a
file named COPYING. Among other things, the copyright notice
and this notice must be preserved on all copies. */
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-Dmc68000 -Dsun"
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Macros used in the machine description to test the flags. */
#define TARGET_68020 (target_flags & 1)
#define TARGET_68881 (target_flags & 2)
#define TARGET_BITFIELD (target_flags & 4)
#define TARGET_DEFER_POP (target_flags & 040)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ { "68020", 5}, \
{ "68881", 2}, \
{ "bitfield", 4}, \
{ "68000", -5}, \
{ "soft-float", -2}, \
{ "nobitfield", -4}, \
{ "defer-pop", 040}, \
{ "", 067}}
/* target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is true for 68020 insns such as bfins and bfexts.
We make it true always by avoiding using the single-bit insns
except in special cases with constant bit numbers. */
#define BITS_BIG_ENDIAN
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on the 68000. */
#define BYTES_BIG_ENDIAN
/* Define this if most significant word of a multiword number is numbered. */
/* For 68000 we can decide arbitrarily
since there are no machine instructions for them. */
/* #define WORDS_BIG_ENDIAN */
/* number of bits in an addressible storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 16
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT 16
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
For the 68000, we give the data registers numbers 0-7,
the address registers numbers 010-017,
and the 68881 floating point registers numbers 020-027. */
#define FIRST_PSEUDO_REGISTER 24
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the 68000, these are the stack pointer and frame pointer. */
#define FIXED_REGISTERS \
{0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 0, 0, 0, 0, 0, 0, \
1, 1, 0, 0, 0, 0, 1, 1, \
1, 1, 0, 0, 0, 0, 0, 0}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the 68000, ordinary registers hold 32 bits worth;
for the 68881 registers, a single register is always enough for
anything that can be stored in them at all. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((REGNO) >= 16 ? 1 \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
On the 68000, the cpu registers can hold any mode but the 68881 registers
can hold only SFmode or DFmode. And the 68881 registers can't hold anything
if 68881 use is disabled. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((REGNO) < 16 || (TARGET_68881 && ((MODE) == SFmode || (MODE) == DFmode)))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(((MODE1) == SFmode || (MODE1) == DFmode) \
== ((MODE2) == SFmode || (MODE2) == DFmode))
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* m68000 pc isn't overloaded on a register. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 15
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 14
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 14
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 8
/* Register in which function's value is returned.
Actually, multiple registers starting with this one may be used
depending on the machine mode of the value. */
#define FUNCTION_VALUE_REGNUM 0
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 9
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The 68000 has three kinds of registers, so eight classes would be
a complete set. One of them is not needed. */
enum reg_class { NO_REGS, DATA_REGS, ADDR_REGS, GENERAL_REGS, FP_REGS, FP_OR_DATA_REGS, ALL_REGS, LIM_REG_CLASSES };
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{"NO_REGS", "DATA_REGS", "ADDR_REGS", "GENERAL_REGS", \
"FP_REGS", "FP_OR_DATA_REGS", "ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS {0, 0xff, 0xff00, 0xffff, 0xff0000, 0xff00ff, 0xffffff}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) >= 16 ? FP_REGS : (REGNO) < 8 ? DATA_REGS : ADDR_REGS)
/* Define a table that lets us find quickly all the reg classes
containing a given one. This is the initializer for an
N_REG_CLASSES x N_REG_CLASSES array of reg class codes.
Row N is a sequence containing all the class codes for
classes that contain all the regs in class N. Each row
contains no duplicates, and is terminated by LIM_REG_CLASSES. */
/* We give just a dummy for the first element, which is for NO_REGS. */
#define REG_CLASS_SUPERCLASSES \
{{LIM_REG_CLASSES}, \
{GENERAL_REGS, FP_OR_DATA_REGS, ALL_REGS, LIM_REG_CLASSES}, \
{GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES}, \
{ALL_REGS, LIM_REG_CLASSES}, \
{FP_OR_DATA_REGS, ALL_REGS, LIM_REG_CLASSES}, \
{ALL_REGS, LIM_REG_CLASSES}, \
{LIM_REG_CLASSES}}
/* The inverse relationship:
for each class, a list of all reg classes contained in it. */
#define REG_CLASS_SUBCLASSES \
{{LIM_REG_CLASSES}, \
{LIM_REG_CLASSES}, \
{LIM_REG_CLASSES}, \
{DATA_REGS, ADDR_REGS, LIM_REG_CLASSES}, \
{LIM_REG_CLASSES}, \
{DATA_REGS, FP_REGS, LIM_REG_CLASSES}, \
{DATA_REGS, ADDR_REGS, FP_REGS, GENERAL_REGS, FP_OR_DATA_REGS, LIM_REG_CLASSES}}
/* Define a table that lets us find quickly the class
for the subunion of any two classes.
We say "subunion" because the result need not be exactly
the union; it may instead be a subclass of the union
(though the closer to the union, the better).
But if it contains anything beyond union of the two classes,
you will lose!
This is an initializer for an N_REG_CLASSES x N_REG_CLASSES
array of reg class codes. The subunion of classes C1 and C2
is just element [C1, C2]. */
#define REG_CLASS_SUBUNION \
{{NO_REGS, DATA_REGS, ADDR_REGS, GENERAL_REGS, FP_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
{DATA_REGS, DATA_REGS, GENERAL_REGS, GENERAL_REGS, FP_OR_DATA_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
{ADDR_REGS, GENERAL_REGS, ADDR_REGS, GENERAL_REGS, ADDR_REGS, ADDR_REGS, ALL_REGS}, \
{GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, ALL_REGS, ALL_REGS, ALL_REGS},\
{FP_REGS, FP_OR_DATA_REGS, FP_REGS, FP_OR_DATA_REGS, FP_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
{FP_OR_DATA_REGS, FP_OR_DATA_REGS, FP_OR_DATA_REGS, ALL_REGS, FP_OR_DATA_REGS, FP_OR_DATA_REGS, ALL_REGS}, \
{ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS}}
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS ADDR_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'a' ? ADDR_REGS : ((C) == 'd' ? DATA_REGS : ((C) == 'f' ? FP_REGS : NO_REGS)))
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
For the 68000, `I' is used for the range 1 to 8
allowed as immediate shift counts and in addq.
`J' is used for the range of signed numbers that fit in 16 bits.
`K' is for numbers that moveq can't handle.
`L' is for range -8 to -1, range of values that can be added with subq. */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
(C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
(C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
(C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 1)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the 68000 series, use a data reg if possible when the
value is a constant in the range where moveq could be used. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((GET_CODE (X) == CONST_INT \
&& (unsigned) (INTVAL (X) + 0x80) < 0x100 \
&& (CLASS) != ADDR_REGS) \
? DATA_REGS : (CLASS))
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the 68000, sp@- in a byte insn really pushes a word. */
#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET 8
/* Define if returning from a function call automatically
pops the arguments described by the number-of-args field in the call. */
/* #define RETURN_POPS_ARGS On the 68000, the caller must pop them. */
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
{ register int regno; \
register int mask = 0; \
static char dont_save_regs[] = CALL_USED_REGISTERS; \
static char *reg_names[] = REGISTER_NAMES; \
fprintf (FILE, "\tlink a6,#%d\n", (SIZE)); \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && ! dont_save_regs[regno]) \
mask |= 1 << (23 - regno); \
if (mask & 0xff) \
fprintf (FILE, "\tfmovem #0x%x,sp@-\n", mask & 0xff); \
mask >>= 8; \
if (exact_log2 (mask) >= 0) \
fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[15 - exact_log2 (mask)]); \
else if (mask) fprintf (FILE, "\tmoveml #0x%x,sp@-\n", mask); }
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
#define FUNCTION_EPILOGUE(FILE, SIZE) \
{ register int regno; \
register int mask; \
register int nregs; \
int offset; \
static char dont_save_regs[] = CALL_USED_REGISTERS; \
static char *reg_names[] = REGISTER_NAMES; \
nregs = 0; mask = 0; \
for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && ! dont_save_regs[regno]) \
{ nregs++; mask |= 1 << (regno - 16); } \
offset = nregs * 12; \
if (mask) \
fprintf (FILE, "\tfmovem a6@(-%d),#0x%x\n", \
offset - (SIZE), mask); \
nregs = 0; mask = 0; \
for (regno = 0; regno < 16; regno++) \
if (regs_ever_live[regno] && ! dont_save_regs[regno]) \
{ nregs++; mask |= 1 << regno; } \
offset += nregs * 4; \
if (exact_log2 (mask) >= 0) \
fprintf (FILE, "\tmovl a6@(-%d),%s\n", \
offset - (SIZE), reg_names[exact_log2 (mask)]); \
else if (mask) \
fprintf (FILE, "\tmoveml a6@(-%d),#0x%x\n", \
offset - (SIZE), mask); \
fprintf (FILE, "\tunlk a6\n\trts\n"); }
/* Addressing modes, and classification of registers for them. */
#define HAVE_POST_INCREMENT
/* #define HAVE_POST_DECREMENT */
#define HAVE_PRE_DECREMENT
/* #define HAVE_PRE_INCREMENT */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
These definitions are NOT overridden anywhere. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
#define REGNO_OK_FOR_BASE_P(REGNO) \
(((REGNO) ^ 010) < 8 || ((unsigned) reg_renumber[REGNO] ^ 010) < 8)
#define REGNO_OK_FOR_DATA_P(REGNO) \
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
#define REGNO_OK_FOR_FP_P(REGNO) \
(((REGNO) ^ 020) < 8 || ((unsigned) reg_renumber[REGNO] ^ 020) < 8)
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is actually machine-independent. */
#define MAX_REGS_PER_ADDRESS 2
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects them all.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Some source files that are used after register allocation
need to be strict. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index or if
it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
/* Nonzero if X is a hard reg that can be used as a base reg
of if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
/* Nonzero if X is a data reg or a pseudo reg. */
#define REG_OK_FOR_DATA_P(X) ((unsigned) (REGNO (X) - 8) >= 16)
/* Nonzero if X is a floating point reg or a pseudo reg. */
#define REG_OK_FOR_FP_P(X) (REGNO (X) >= 16)
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
/* Nonzero if X is a data reg. */
#define REG_OK_FOR_DATA_P(X) REGNO_OK_FOR_DATA_P (REGNO (X))
/* Nonzero if X is a floating point reg. */
#define REG_OK_FOR_FP_P(X) REGNO_OK_FOR_FP_P (REGNO (X))
#endif
#define REG_OK_FOR_CLASS_P(X, C) \
(((C) == 'd' && REG_OK_FOR_DATA_P(X)) \
|| (C) == 'a' && REG_OK_FOR_BASE_P(X) \
|| (C) == 'f' && REG_OK_FOR_FP_P(X))
#define REGNO_OK_FOR_CLASS_P(X, C) \
(((C) == 'd' && REGNO_OK_FOR_DATA_P(X)) \
|| (C) == 'a' && REGNO_OK_FOR_BASE_P(X) \
|| (C) == 'f' && REGNO_OK_FOR_FP_P(X))
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT \
|| GET_CODE (X) == CONST)
#define REG_P(X) \
(GET_CODE (X) == REG)
#define DATA_REG_P(X) \
(GET_CODE (X) == REG && REGNO_OK_FOR_DATA_P (REGNO (X)))
#define FP_REG_P(X) \
(GET_CODE (X) == REG && REGNO_OK_FOR_FP_P (REGNO (X)))
#define ADDRESS_REG_P(X) \
(GET_CODE (X) == REG && REGNO_OK_FOR_BASE_P (REGNO (X)))
#define INDIRECTABLE_1_ADDRESS_P(X) \
(CONSTANT_ADDRESS_P (X) \
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|| ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
&& REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
|| (GET_CODE (X) == PLUS \
&& REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))
#if 0
/* This should replace the last two lines
except that Sun's assembler does not seem to handle such operands. */
&& (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
: (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
#endif
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
#define GO_IF_INDEXABLE_BASE(X, ADDR) \
{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \
if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
#define GO_IF_INDEXING(X, ADDR) \
{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
{ GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
{ GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
#define GO_IF_INDEXED_ADDRESS(X, ADDR) \
{ GO_IF_INDEXING (X, ADDR); \
if (GET_CODE (X) == PLUS) \
{ if (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
GO_IF_INDEXING (XEXP (X, 0), ADDR); \
if (GET_CODE (XEXP (X, 0)) == CONST_INT \
&& (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
GO_IF_INDEXING (XEXP (X, 1), ADDR); } }
#if 0
/* Note we allow a constant address here if it is a LABEL_REF.
That is not strictly correct, since the CODE_LABEL has to be less than
2**7 bytes away from this insn. But that is true in the only cases
that matter, which occur in switch statements. */
#define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \
if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
if (GET_CODE (X) == PLUS && \
((REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
|| \
(REG_P (XEXP (X, 1)) && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
&& GET_CODE (XEXP (X, 0)) == CONST_INT \
&& (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))) \
goto ADDR; }
#define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \
if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
if (GET_CODE (X) == PLUS && \
((REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
: (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100))) \
|| \
(REG_P (XEXP (X, 1)) && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
&& (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 0)) \
: (GET_CODE (XEXP (X, 0)) == CONST_INT \
&& (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))))) \
goto ADDR; }
#endif
#define LEGITIMATE_INDEX_REG_P(X) \
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|| (GET_CODE (X) == SIGN_EXTEND \
&& GET_CODE (XEXP (X, 0)) == REG \
&& GET_MODE (XEXP (X, 0)) == HImode \
&& REG_OK_FOR_INDEX_P (XEXP (X, 0))))
#define LEGITIMATE_INDEX_P(X) \
(LEGITIMATE_INDEX_REG_P (X) \
|| (TARGET_68020 && GET_CODE (X) == MULT \
&& LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (INTVAL (XEXP (X, 1)) == 2 \
|| INTVAL (XEXP (X, 1)) == 4 \
|| INTVAL (XEXP (X, 1)) == 8)))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
GO_IF_INDEXED_ADDRESS (X, ADDR); }
#if 0
if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
{ GO_IF_INDEXABLE_ADDRESS (XEXP (X, 1), ADDR); } \
if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
{ GO_IF_INDEXABLE_ADDRESS (XEXP (X, 0), ADDR); } }
#endif
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 68000, we handle X+REG by loading X into a register R and
using R+REG. R will go in an address reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in an address reg. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ register int ch = (X) != (OLDX); \
if (GET_CODE (X) == PLUS) \
{ if (GET_CODE (XEXP (X, 0)) == MULT) \
ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
if (GET_CODE (XEXP (X, 1)) == MULT) \
ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
if (ch && GET_CODE (XEXP (X, 1)) == REG \
&& GET_CODE (XEXP (X, 0)) == REG) \
return X; \
if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
if (GET_CODE (XEXP (X, 0)) == REG \
|| (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
&& GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
{ register rtx temp = gen_reg_rtx (Pmode); \
register rtx val = force_operand (XEXP (X, 1), temp); \
if (val != temp) emit_move_insn (temp, val, 0); \
XEXP (X, 1) = temp; \
return X; } \
else if (GET_CODE (XEXP (X, 1)) == REG \
|| (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
&& GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
&& GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
{ register rtx temp = gen_reg_rtx (Pmode); \
register rtx val = force_operand (XEXP (X, 0), temp); \
if (val != temp) emit_move_insn (temp, val, 0); \
XEXP (X, 0) = temp; \
return X; }}}
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE HImode
/* Define this if the tablejump instruction expects the table
to contain offsets from the address of the table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define this if zero-extension is slow (more than one real instruction). */
#define SLOW_ZERO_EXTEND
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
#define SHIFT_COUNT_TRUNCATED
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE) \
case CONST_INT: \
/* Constant zero is super cheap due to clr instruction. */ \
if (RTX == const0_rtx) return 0; \
if ((unsigned) INTVAL (RTX) < 077) return 1; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 3; \
case CONST_DOUBLE: \
return 5;
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). */
/* Set if the cc value is actually in the 68881, so a floating point
conditional branch must be output. */
#define CC_IN_68881 040
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
/* On the 68000, all the insns to store in an address register
fail to set the cc's. However, in some cases these instructions
can make it possibly invalid to use the saved cc's. In those
cases we clear out some or all of the saved cc's so they won't be used. */
#define NOTICE_UPDATE_CC(EXP) \
{ if (GET_CODE (EXP) == SET) \
{ if (ADDRESS_REG_P (XEXP (EXP, 0))) \
{ if (cc_status.value1 \
&& reg_mentioned_p (XEXP (EXP, 0), cc_status.value1)) \
cc_status.value1 = 0; \
if (cc_status.value2 \
&& reg_mentioned_p (XEXP (EXP, 0), cc_status.value2)) \
cc_status.value2 = 0; } \
else if (XEXP (EXP, 0) != pc_rtx) \
{ cc_status.flags = 0; \
cc_status.value1 = XEXP (EXP, 0); \
cc_status.value2 = XEXP (EXP, 1); } } \
else if (GET_CODE (EXP) == PARALLEL \
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
{ if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
CC_STATUS_INIT; \
else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
{ cc_status.flags = 0; \
cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
else CC_STATUS_INIT; \
if (cc_status.value2 != 0 \
&& ADDRESS_REG_P (cc_status.value2) \
&& GET_MODE (cc_status.value2) == QImode) \
CC_STATUS_INIT; \
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
&& cc_status.value2 \
&& reg_mentioned_p (cc_status.value1, cc_status.value2)) \
cc_status.value2 = 0; \
if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \
|| (cc_status.value2 && FP_REG_P (cc_status.value2))) \
cc_status.flags = CC_IN_68881; \
if (cc_status.value2 != 0) \
switch (GET_CODE (cc_status.value2)) \
{ case PLUS: case MINUS: case MULT: case UMULT: \
case DIV: case UDIV: case ASHIFT: case LSHIFT: \
case NEG: \
if (GET_MODE (cc_status.value2) != VOIDmode) \
cc_status.flags |= CC_NO_OVERFLOW; }}
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
{ if (cc_status.flags & CC_IN_68881) \
return FLOAT; \
if (cc_status.flags & CC_NO_OVERFLOW) \
return NO_OV; \
return NORMAL; }
/* Control the assembler format that we output. */
#define TEXT_SECTION_ASM_OP ".text"
#define DATA_SECTION_ASM_OP ".data"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
"a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7"}
/* How to renumber registers for dbx and gdb.
On the Sun-3, the floating point registers have numbers
18 to 25, not 16 to 23 as they do in the compiler. */
#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
fprintf (FILE, "\t.double 0r%e\n", (VALUE))
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { union { float f; long l;} tem; \
tem.f = (VALUE); \
fprintf (FILE, "\t.long 0x%x\n", tem.l); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) == 1) \
fprintf (FILE, "\t.even\n"); \
else if ((LOG) != 0) \
abort ();
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.skip %d\n", (SIZE))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Specify what to precede various sizes of constant with
in the output file. */
#define ASM_INT_OP ".long "
#define ASM_SHORT_OP ".word "
#define ASM_CHAR_OP ".byte "
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
#define PRINT_OPERAND(FILE, X) \
{ if (GET_CODE (X) == REG) \
fprintf (FILE, "%s", reg_name [REGNO (X)]); \
else if (GET_CODE (X) == MEM) \
output_address (XEXP (X, 0)); \
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
{ union { double d; int i[2]; } u; \
union { float f; int i; } u1; \
u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
u1.f = u.d; \
fprintf (FILE, "#0x%x", u1.i); } \
else if (GET_CODE (X) == CONST_DOUBLE) \
{ union { double d; int i[2]; } u; \
u.i[0] = XINT (X, 0); u.i[1] = XINT (X, 1); \
fprintf (FILE, "#0r%g", u.d); } \
else { putc ('#', FILE); output_addr_const (FILE, X); }}
/* Note that this contains a kludge that knows that the only reason
we have an address (plus (label_ref...) (reg...))
is in the insn before a tablejump, and the displacement must be 6. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
{ register rtx reg1, reg2, breg, ireg; \
register rtx addr = ADDR; \
rtx offset; \
switch (GET_CODE (addr)) \
{ \
case REG: \
fprintf (FILE, "%s@", reg_name [REGNO (addr)]); \
break; \
case PRE_DEC: \
fprintf (FILE, "%s@-", reg_name [REGNO (XEXP (addr, 0))]); \
break; \
case POST_INC: \
fprintf (FILE, "%s@+", reg_name [REGNO (XEXP (addr, 0))]); \
break; \
case PLUS: \
reg1 = 0; reg2 = 0; \
ireg = 0; breg = 0; \
offset = 0; \
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
{ \
offset = XEXP (addr, 0); \
addr = XEXP (addr, 1); \
} \
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
{ \
offset = XEXP (addr, 1); \
addr = XEXP (addr, 0); \
} \
if (GET_CODE (addr) != PLUS) ; \
else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
{ \
reg1 = XEXP (addr, 0); \
addr = XEXP (addr, 1); \
} \
else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
{ \
reg1 = XEXP (addr, 1); \
addr = XEXP (addr, 0); \
} \
else if (GET_CODE (XEXP (addr, 0)) == MULT) \
{ \
reg1 = XEXP (addr, 0); \
addr = XEXP (addr, 1); \
} \
else if (GET_CODE (XEXP (addr, 1)) == MULT) \
{ \
reg1 = XEXP (addr, 1); \
addr = XEXP (addr, 0); \
} \
else if (GET_CODE (XEXP (addr, 0)) == REG) \
{ \
reg1 = XEXP (addr, 0); \
addr = XEXP (addr, 1); \
} \
else if (GET_CODE (XEXP (addr, 1)) == REG) \
{ \
reg1 = XEXP (addr, 1); \
addr = XEXP (addr, 0); \
} \
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
|| GET_CODE (addr) == SIGN_EXTEND) \
{ if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
/* for OLD_INDEXING \
else if (GET_CODE (addr) == PLUS) \
{ \
if (GET_CODE (XEXP (addr, 0)) == REG) \
{ \
reg2 = XEXP (addr, 0); \
addr = XEXP (addr, 1); \
} \
else if (GET_CODE (XEXP (addr, 1)) == REG) \
{ \
reg2 = XEXP (addr, 1); \
addr = XEXP (addr, 0); \
} \
} \
*/ \
if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
|| GET_CODE (reg1) == MULT)) \
|| (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
{ breg = reg2; ireg = reg1; } \
else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
{ breg = reg1; ireg = reg2; } \
if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
{ int scale = 1; \
if (GET_CODE (ireg) == MULT) \
{ scale = INTVAL (XEXP (ireg, 1)); \
ireg = XEXP (ireg, 0); } \
if (GET_CODE (ireg) == SIGN_EXTEND) \
fprintf (FILE, "pc@(6,%s:w", reg_name[REGNO (XEXP (ireg, 0))]); \
else \
fprintf (FILE, "pc@(6,%s:l", reg_name[REGNO (ireg)]); \
if (scale != 1) fprintf (FILE, ":%d", scale); \
putc (')', FILE); \
break; } \
if (ireg != 0 || breg != 0) \
{ int scale = 1; \
if (breg == 0) \
abort (); \
fprintf (FILE, "%s@(", reg_name[REGNO (breg)]); \
if (addr != 0) \
output_addr_const (FILE, addr); \
if (addr != 0 && ireg != 0) \
putc (',', FILE); \
if (ireg != 0 && GET_CODE (ireg) == MULT) \
{ scale = INTVAL (XEXP (ireg, 1)); \
ireg = XEXP (ireg, 0); } \
if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
fprintf (FILE, "%s:w", reg_name[REGNO (XEXP (ireg, 0))]); \
else if (ireg != 0) \
fprintf (FILE, "%s:l", reg_name[REGNO (ireg)]); \
if (scale != 1) fprintf (FILE, ":%d", scale); \