-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.py
295 lines (268 loc) · 10.6 KB
/
grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python
import numpy as np
# A structure for a grid that discretizes six dimensions one by one.
# The six dimensions are in the sequence of R, PHI, THETA for the translational space,
# followed by PHI1, PHI2, THETA for the rotational space represented by the quaternion q.
class Node:
def __init__(self, xs=[]):
self.xs = xs # for leaves, xs=[]
self.y = None # for leaves, y is a np-array
self.next = [] # for leaves, next=[]
def count(self):
if not self.next:
return 1
else:
return sum(node.count() for node in self.next)
class Grid:
# Set the parameters that control the density of the grid points
# For the meaning of ang_params and ori_params, check the _get_dl() method
def __init__(self):
self.headNode = None
self.n = None
self.rs = np.concatenate((np.linspace(2.0, 3.5, 15), np.linspace(3.5, 6.0, 9)[1:], np.linspace(6.0, 12.0, 8)[1:]))
self.ang_params = (0.20, 0.45, 3.8, 0.4)
self.ori_params = (0.23, 0.45, 3.8, 0.4)
# Setup the grid structure without assigning the y values
def setup(self):
rs = self.rs
node_r = Node(rs)
for r in rs:
phis = self._discretize_phi(r)
node_phi = Node(phis)
node_r.next.append(node_phi)
for phi in phis:
thetas = self._discretize_theta(r, phi)
node_theta = Node(thetas)
node_phi.next.append(node_theta)
for theta in thetas:
ophi1s = self._discretize_ophi1(r)
node_ophi1 = Node(ophi1s)
node_theta.next.append(node_ophi1)
for ophi1 in ophi1s:
ophi2s = self._discretize_ophi2(r, ophi1)
node_ophi2 = Node(ophi2s)
node_ophi1.next.append(node_ophi2)
for ophi2 in ophi2s:
othetas = self._discretize_otheta(r, ophi1, ophi2)
node_otheta = Node(othetas)
node_ophi2.next.append(node_otheta)
for otheta in othetas:
leaf = Node()
node_otheta.next.append(leaf)
self.headNode = node_r
self.n = self._count()
print "The grid structure is now set up. The grid consists of %d points." % self.n
# carry out interpolation
def interpolate(self, coor, order=2):
return self._interpolate_help(coor, self.headNode, order)
# recursive helper
def _interpolate_help(self, coor, node, order):
if not node.next:
return node.y
my_x = coor[0]
coor = coor[1:]
if order == 1:
neighbors = self._find_neighbors2(node.xs, my_x)
elif order == 2:
neighbors = self._find_neighbors3(node.xs, my_x)
elif order == 3:
neighbors = self._find_neighbors4(node.xs, my_x)
else:
raise Exception("Invalid order for interpolant. Choose from 1, 2 and 3")
xs = []
ys = []
for i in neighbors:
xs.append(node.xs[i])
ys.append(self._interpolate_help(coor, node.next[i], order))
my_y = self._interp_1D(xs, ys, my_x)
fmt = '[' + '%.2f,'*(len(xs)-1) + '%.2f]'
return my_y
# load the grid parameters from a text file, build the grid structure, then
# load y values for the grid points from the text file
def load(self, filename):
print "Loading y values for each grid point from", filename
with open(filename) as file:
for i in range(3):
line = file.readline().split()
if line[0] == 'ANGPRM':
self.ang_params = tuple(float(entry) for entry in line[1:])
elif line[0] == 'ORIPRM':
self.ori_params = tuple(float(entry) for entry in line[1:])
elif line[0] == 'RS':
self.rs = np.array([float(entry) for entry in line[1:]])
else:
raise Exception('Wrong data file format!')
self.setup()
for leaf, x in self._gen_leaves_with_x():
line = file.readline().split()
if len(line) != 7:
raise Exception('Data file format error!')
leaf.y = np.array([float(entry) for entry in line])
line = file.readline().split()
if line:
raise Exception('Extra lines in data file!')
# Generate x values for all points
def gen_x(self):
for leaf, x in self._gen_leaves_with_x_help(self.headNode, []):
yield x
# Generate node leaves together with their x values, used by load()
def _gen_leaves_with_x(self):
for leaf, x in self._gen_leaves_with_x_help(self.headNode, []):
yield leaf, x
# recursive helper
def _gen_leaves_with_x_help(self, node, pre_x):
if not node.next:
yield node, pre_x
return
for i in range(len(node.next)):
for _ in self._gen_leaves_with_x_help(node.next[i], pre_x+[node.xs[i]]):
yield _
# Count the total number of points in the grid
def _count(self):
return self.headNode.count()
# Use a 4-parameter sigmoidal function to calculate the approximate distance between two points
# on the 3D sphere for angular DOFs or 4D sphere for rotational DOFs.
# The four parameters specify the lower limit, upper limit, transition position and transition
# steepness of the sigmoidal function.
def _get_dl(self, r, params):
dl0, dl1, r0, s = params
return (dl1 - dl0) / (1 + np.exp((r0 - r) / s)) + dl0
# The following methods discretizes each dimension.
# The density depends only on r.
# attention: the discretizing range for each dimension fits the reflection
# planes of water's refCoor, need to consider propers ways to generalize
def _discretize_phi(self, r):
dl = self._get_dl(r, self.ang_params)
mini, maxi = 0., np.pi/2
l = maxi - mini
n = max(1, np.ceil(l/dl))
if n == 1:
return np.linspace(mini, maxi, n)
else:
da = l / (n-1)
# attention: for periodicity, leave out for the moment
#return np.linspace(mini-da, maxi, n+1)
return np.linspace(mini, maxi, n)
def _discretize_theta(self, r, phi):
dl = self._get_dl(r, self.ang_params)
mini, maxi = 0., np.pi
l = (maxi - mini) * np.cos(phi)
n = max(1, np.ceil(l/dl))
if n == 1:
return np.linspace(mini, maxi, n)
else:
da = l / (n-1)
#return np.linspace(mini-da, maxi+da, n+2)
return np.linspace(mini, maxi, n)
def _discretize_ophi1(self, r):
dl = self._get_dl(r, self.ori_params)
mini, maxi = 0., np.pi/2
l = maxi - mini
n = max(1, np.ceil(l/dl))
if n == 1:
return np.linspace(mini, maxi, n)
else:
da = l / (n-1)
#return np.linspace(mini-da, maxi, n+1)
return np.linspace(mini, maxi, n)
def _discretize_ophi2(self, r, ophi1):
dl = self._get_dl(r, self.ori_params)
mini, maxi = 0., np.pi/2
l = (maxi - mini) * np.cos(ophi1)
n = max(1, np.ceil(l/dl))
if n == 1:
return np.linspace(mini, maxi, n)
else:
da = l / (n-1)
#return np.linspace(mini-da, maxi, n+1)
return np.linspace(mini, maxi, n)
def _discretize_otheta(self, r, ophi1, ophi2):
dl = self._get_dl(r, self.ori_params)
mini, maxi = -np.pi, np.pi
l = (maxi - mini) * np.cos(ophi1) * np.cos(ophi2)
n = max(1, np.ceil(l/dl))
if n == 1:
return np.linspace(mini, maxi, n)
else:
da = l / (n-1)
#return np.linspace(mini-da, maxi+da, n+2)
return np.linspace(mini, maxi, n)
# The following methods carries out 1D neighbor search for the query value
# attention: need better range check
# Two points for linear interpolation
def _find_neighbors2(self, xs, my_x):
n = len(xs)
if n <= 2:
return range(len(xs))
i = 1
while i < n:
if xs[i] > my_x:
break
i += 1
if i == n:
print xs, my_x
raise Exception("x value out of range!")
return [i-1, i]
# Three points for 2nd order interpolation
def _find_neighbors3(self, xs, my_x):
n = len(xs)
if n <= 3:
return range(len(xs))
i = 1
while i < n:
if xs[i] > my_x:
break
i += 1
if i == n:
raise Exception("x value out of range!")
if i < 2:
return [i-1, i, i+1]
if i > n - 2:
return [i-2, i-1, i]
return [i-1, i, i+1]
# Four points for 3rd order interpolation
def _find_neighbors4(self, xs, my_x):
n = len(xs)
if n < 4:
return range(len(xs))
i = 1
while i < n:
if xs[i] > my_x:
break
i += 1
if i == n:
raise Exception("x value out of range!")
if i == 1:
return [0, 1, 2]
if i == n-1:
return [n-3, n-2, n-1]
return [i-2, i-1, i, i+1]
# Carries out 1D Lagrange interpolation
# choose the order of the interpolant based on the number of points
def _interp_1D(self, xs, ys, my_x):
if len(xs) == 1:
return ys[0]
if len(xs) == 2:
x0, x1 = xs
y0, y1 = ys
return y0 + (my_x - x0) * (y1 - y0) / (x1 - x0)
if len(xs) == 3:
x0, x1, x2 = xs
y0, y1, y2 = ys
a1 = (y1 - y0) / (x1 - x0)
a2 = (y2 - y0 - a1 * (x2 - x0)) / (x2 - x0) / (x2 - x1)
return y0 + a1 * (my_x - x0) + a2 * (my_x - x0) * (my_x - x1)
if len(xs) == 4:
x0, x1, x2, x3 = xs
y0, y1, y2, y3 = ys
a1 = (y1 - y0) / (x1 - x0)
a2 = (y2 - y0 - a1 * (x2 - x0)) / (x2 - x0) / (x2 - x1)
a3 = (y3 - y0 - a1 * (x3 - x0) - a2 * (x3 - x0) * (x3 - x1)) / (x3 - x0) / (x3 - x1) / (x3 - x2)
return y0 + a1 * (my_x - x0) + a2 * (my_x - x0) * (my_x - x1) + \
a3 * (my_x - x0) * (my_x - x1) * (my_x - x2)
if __name__ == "__main__":
grid = Grid()
print "setting up"
grid.setup()
print "counting"
print "Total number of points:", grid.n