-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathnet-networkx-demo2.py
74 lines (52 loc) · 1.29 KB
/
net-networkx-demo2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from pylab import *
import networkx as nx
### creating complex networks
er = nx.erdos_renyi_graph(200, 0.02)
ws = nx.watts_strogatz_graph(200, 4, 0.03)
ba = nx.barabasi_albert_graph(200, 4)
### visualizing networks
subplot(1, 3, 1)
nx.draw(er)
axis('image')
title('Erdos-Renyi')
subplot(1, 3, 2)
nx.draw(ws)
axis('image')
title('Watts-Strogatz')
subplot(1, 3, 3)
nx.draw(ba)
axis('image')
title('Barabasi-Albert')
show()
### obtaining degree distributions
print('Degrees of all nodes in ba are:')
print(dict(ba.degree))
# original degree distribution
hist = nx.degree_histogram(ba)
print('When binned:')
print(hist)
# complementary cummulative distribution function (CCDF)
ccdf = [sum(hist[k:]) for k in range(len(hist))]
print('Its CCDF:')
print(ccdf)
print('See figures for log-log plots')
subplot(1, 2, 1)
loglog(hist)
title('Original degree distribution')
subplot(1, 2, 2)
loglog(ccdf)
title('CCDF')
show()
### finding important structures
# minimum spanning tree
mst = nx.minimum_spanning_tree(ba)
nx.draw(mst)
title('Minimum spanning tree of ba')
# k-core
kc = nx.k_core(er)
print('Nodes in the k-core of er are:')
print(kc.nodes)
print('Size of the k-core: ', kc.number_of_nodes())
nx.draw(kc)
title('k-core of er')
show()