-
Notifications
You must be signed in to change notification settings - Fork 13
/
main_onnxrun.py
229 lines (206 loc) · 9.68 KB
/
main_onnxrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import onnxruntime as ort
import numpy as np
import argparse
import cv2
import pyclipper
from shapely.geometry import Polygon
class SegDetectorRepresenter():
def __init__(self, thresh=0.5, box_thresh=0.7, max_candidates=1000, unclip_ratio=1.5):
self.min_size = 3
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
def __call__(self, batch, pred, is_output_polygon=False):
segmentation = self.binarize(pred)
boxes_batch = []
scores_batch = []
height, width = batch['shape']
if is_output_polygon:
boxes, scores = self.polygons_from_bitmap(pred, segmentation, width, height)
else:
boxes, scores = self.boxes_from_bitmap(pred, segmentation, width, height)
boxes_batch.append(boxes)
scores_batch.append(scores)
return boxes_batch, scores_batch
def binarize(self, pred):
return pred > self.thresh
def polygons_from_bitmap(self, pred, bitmap, dest_width, dest_height):
assert len(bitmap.shape) == 2
height, width = bitmap.shape
boxes = []
scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.005 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
# _, sside = self.get_mini_boxes(contour)
# if sside < self.min_size:
# continue
score = self.box_score_fast(pred, contour.squeeze(1))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, unclip_ratio=self.unclip_ratio)
if len(box) > 1:
continue
else:
continue
box = box.reshape(-1, 2)
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box)
scores.append(score)
return boxes, scores
def boxes_from_bitmap(self, pred, bitmap, dest_width, dest_height):
assert len(bitmap.shape) == 2
height, width = bitmap.shape
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
num_contours = min(len(contours), self.max_candidates)
boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
scores = np.zeros((num_contours,), dtype=np.float32)
for index in range(num_contours):
contour = contours[index].squeeze(1)
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, contour)
if self.box_thresh > score:
continue
box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes[index, :, :] = box.astype(np.int16)
scores[index] = score
return boxes, scores
def unclip(self, box, unclip_ratio=1.5):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [points[index_1], points[index_2], points[index_3], points[index_4]]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
class dbnet:
def __init__(self, binaryThreshold=0.5, polygonThreshold=0.7, unclipRatio=1.5, maxCandidates=1000):
self.model = ort.InferenceSession('model_0.88_depoly.onnx')
self.decode = SegDetectorRepresenter(thresh=binaryThreshold, box_thresh=polygonThreshold, max_candidates=maxCandidates, unclip_ratio=unclipRatio)
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape((1, 1, 3))
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape((1, 1, 3))
self.imgsize = (736, 736)
def detect(self, srcimg):
h, w = srcimg.shape[:2]
img = cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, self.imgsize)
img = img.astype(np.float32) / 255.0
img = (img - self.mean) / self.std
img = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0).astype(np.float32)
outputs = self.model.run(None, {'input': img})
mask = outputs[0][0, 0, ...]
batch = {'shape': (h, w)}
box_list, score_list = self.decode(batch, outputs[0])
box_list, score_list = box_list[0], score_list[0]
is_output_polygon = False
if len(box_list) > 0:
if is_output_polygon:
idx = [x.sum() > 0 for x in box_list]
box_list = [box_list[i] for i, v in enumerate(idx) if v]
score_list = [score_list[i] for i, v in enumerate(idx) if v]
else:
idx = box_list.reshape(box_list.shape[0], -1).sum(axis=1) > 0 # 去掉全为0的框
box_list, score_list = box_list[idx], score_list[idx]
else:
box_list, score_list = [], []
for point in box_list:
point = point.astype(int)
cv2.polylines(srcimg, [point], True, (0, 0, 255), thickness=2)
for i in range(4):
cv2.circle(srcimg, tuple(point[i, :]), 3, (0, 255, 0), thickness=-1)
return srcimg
def cmp_onnxrun_opencv(imgpath):
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape((1, 1, 3))
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape((1, 1, 3))
imgsize = (736, 736)
onnx_model = ort.InferenceSession('model_0.88_depoly.onnx')
opencv_model = cv2.dnn.readNet('model_0.88_depoly.onnx')
srcimg = cv2.imread(imgpath)
img = cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, imgsize)
img = img.astype(np.float32) / 255.0
img = (img - mean) / std
onnx_blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0).astype(np.float32)
onnx_out = onnx_model.run(None, {'input': onnx_blob})
opencv_blob = cv2.dnn.blobFromImage(img)
opencv_model.setInput(opencv_blob)
opencv_out = opencv_model.forward()
if np.array_equal(onnx_blob, opencv_blob):
print('input is same')
else:
print('input is different, mean dif =', np.mean(onnx_blob - opencv_blob))
if np.array_equal(onnx_out, opencv_out):
print('output is same')
else:
print('output is different, mean dif =', np.mean(onnx_out - opencv_out))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='RetinaPL')
parser.add_argument('--imgpath', default='testimgs/2.png', type=str, help='image path')
parser.add_argument('--binaryThreshold', default=0.5, type=float, help='binary Threshold')
parser.add_argument('--polygonThreshold', default=0.7, type=float, help='polygon Threshold')
parser.add_argument('--unclipRatio', default=1.7, type=float, help='unclip Ratio')
parser.add_argument('--maxCandidates', default=1000, type=int, help='max Candidates')
args = parser.parse_args()
cmp_onnxrun_opencv(args.imgpath)
net = dbnet(binaryThreshold=args.binaryThreshold, polygonThreshold=args.polygonThreshold,
unclipRatio=args.unclipRatio, maxCandidates=args.maxCandidates)
srcimg = cv2.imread(args.imgpath)
srcimg = net.detect(srcimg)
# cv2.imwrite('result.jpg', srcimg)
cv2.namedWindow('detect', cv2.WINDOW_NORMAL)
cv2.imshow('detect', srcimg)
cv2.waitKey(0)
cv2.destroyAllWindows()