-
Notifications
You must be signed in to change notification settings - Fork 1
/
fft_kernelstring.cpp
1257 lines (1109 loc) · 50.1 KB
/
fft_kernelstring.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// File: fft_kernelstring.cpp
//
// Version: <1.0>
//
// Disclaimer: IMPORTANT: This Apple software is supplied to you by Apple Inc. ("Apple")
// in consideration of your agreement to the following terms, and your use,
// installation, modification or redistribution of this Apple software
// constitutes acceptance of these terms. If you do not agree with these
// terms, please do not use, install, modify or redistribute this Apple
// software.
//
// In consideration of your agreement to abide by the following terms, and
// subject to these terms, Apple grants you a personal, non - exclusive
// license, under Apple's copyrights in this original Apple software ( the
// "Apple Software" ), to use, reproduce, modify and redistribute the Apple
// Software, with or without modifications, in source and / or binary forms;
// provided that if you redistribute the Apple Software in its entirety and
// without modifications, you must retain this notice and the following text
// and disclaimers in all such redistributions of the Apple Software. Neither
// the name, trademarks, service marks or logos of Apple Inc. may be used to
// endorse or promote products derived from the Apple Software without specific
// prior written permission from Apple. Except as expressly stated in this
// notice, no other rights or licenses, express or implied, are granted by
// Apple herein, including but not limited to any patent rights that may be
// infringed by your derivative works or by other works in which the Apple
// Software may be incorporated.
//
// The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO
// WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
// WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
// ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
//
// IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
// AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
// UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
// OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
//
////////////////////////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <sstream>
#include <string>
#include <assert.h>
#include "fft_internal.h"
#include "clFFT.h"
using namespace std;
#define max(A,B) ((A) > (B) ? (A) : (B))
#define min(A,B) ((A) < (B) ? (A) : (B))
static string
num2str(int num)
{
char temp[200];
sprintf(temp, "%d", num);
return string(temp);
}
// For any n, this function decomposes n into factors for loacal memory tranpose
// based fft. Factors (radices) are sorted such that the first one (radixArray[0])
// is the largest. This base radix determines the number of registers used by each
// work item and product of remaining radices determine the size of work group needed.
// To make things concrete with and example, suppose n = 1024. It is decomposed into
// 1024 = 16 x 16 x 4. Hence kernel uses float2 a[16], for local in-register fft and
// needs 16 x 4 = 64 work items per work group. So kernel first performance 64 length
// 16 ffts (64 work items working in parallel) following by transpose using local
// memory followed by again 64 length 16 ffts followed by transpose using local memory
// followed by 256 length 4 ffts. For the last step since with size of work group is
// 64 and each work item can array for 16 values, 64 work items can compute 256 length
// 4 ffts by each work item computing 4 length 4 ffts.
// Similarly for n = 2048 = 8 x 8 x 8 x 4, each work group has 8 x 8 x 4 = 256 work
// iterms which each computes 256 (in-parallel) length 8 ffts in-register, followed
// by transpose using local memory, followed by 256 length 8 in-register ffts, followed
// by transpose using local memory, followed by 256 length 8 in-register ffts, followed
// by transpose using local memory, followed by 512 length 4 in-register ffts. Again,
// for the last step, each work item computes two length 4 in-register ffts and thus
// 256 work items are needed to compute all 512 ffts.
// For n = 32 = 8 x 4, 4 work items first compute 4 in-register
// lenth 8 ffts, followed by transpose using local memory followed by 8 in-register
// length 4 ffts, where each work item computes two length 4 ffts thus 4 work items
// can compute 8 length 4 ffts. However if work group size of say 64 is choosen,
// each work group can compute 64/ 4 = 16 size 32 ffts (batched transform).
// Users can play with these parameters to figure what gives best performance on
// their particular device i.e. some device have less register space thus using
// smaller base radix can avoid spilling ... some has small local memory thus
// using smaller work group size may be required etc
static void
getRadixArray(unsigned int n, unsigned int *radixArray, unsigned int *numRadices, unsigned int maxRadix)
{
if(maxRadix > 1)
{
maxRadix = min(n, maxRadix);
unsigned int cnt = 0;
while(n > maxRadix)
{
radixArray[cnt++] = maxRadix;
n /= maxRadix;
}
radixArray[cnt++] = n;
*numRadices = cnt;
return;
}
switch(n)
{
case 2:
*numRadices = 1;
radixArray[0] = 2;
break;
case 4:
*numRadices = 1;
radixArray[0] = 4;
break;
case 8:
*numRadices = 1;
radixArray[0] = 8;
break;
case 16:
*numRadices = 2;
radixArray[0] = 8; radixArray[1] = 2;
break;
case 32:
*numRadices = 2;
radixArray[0] = 8; radixArray[1] = 4;
break;
case 64:
*numRadices = 2;
radixArray[0] = 8; radixArray[1] = 8;
break;
case 128:
*numRadices = 3;
radixArray[0] = 8; radixArray[1] = 4; radixArray[2] = 4;
break;
case 256:
*numRadices = 4;
radixArray[0] = 4; radixArray[1] = 4; radixArray[2] = 4; radixArray[3] = 4;
break;
case 512:
*numRadices = 3;
radixArray[0] = 8; radixArray[1] = 8; radixArray[2] = 8;
break;
case 1024:
*numRadices = 3;
radixArray[0] = 16; radixArray[1] = 16; radixArray[2] = 4;
break;
case 2048:
*numRadices = 4;
radixArray[0] = 8; radixArray[1] = 8; radixArray[2] = 8; radixArray[3] = 4;
break;
default:
*numRadices = 0;
return;
}
}
static void
insertHeader(string &kernelString, string &kernelName, clFFT_DataFormat dataFormat)
{
if(dataFormat == clFFT_SplitComplexFormat)
kernelString += string("__kernel void ") + kernelName + string("(__global float *in_real, __global float *in_imag, __global float *out_real, __global float *out_imag, int dir, int S)\n");
else
kernelString += string("__kernel void ") + kernelName + string("(__global float2 *in, __global float2 *out, int dir, int S)\n");
}
static void
insertVariables(string &kStream, int maxRadix)
{
kStream += string(" int i, j, r, indexIn, indexOut, index, tid, bNum, xNum, k, l;\n");
kStream += string(" int s, ii, jj, offset;\n");
kStream += string(" float2 w;\n");
kStream += string(" float ang, angf, ang1;\n");
kStream += string(" __local float *lMemStore, *lMemLoad;\n");
kStream += string(" float2 a[") + num2str(maxRadix) + string("];\n");
kStream += string(" int lId = get_local_id( 0 );\n");
kStream += string(" int groupId = get_group_id( 0 );\n");
}
static void
formattedLoad(string &kernelString, int aIndex, int gIndex, clFFT_DataFormat dataFormat)
{
if(dataFormat == clFFT_InterleavedComplexFormat)
kernelString += string(" a[") + num2str(aIndex) + string("] = in[") + num2str(gIndex) + string("];\n");
else
{
kernelString += string(" a[") + num2str(aIndex) + string("].x = in_real[") + num2str(gIndex) + string("];\n");
kernelString += string(" a[") + num2str(aIndex) + string("].y = in_imag[") + num2str(gIndex) + string("];\n");
}
}
static void
formattedStore(string &kernelString, int aIndex, int gIndex, clFFT_DataFormat dataFormat)
{
if(dataFormat == clFFT_InterleavedComplexFormat)
kernelString += string(" out[") + num2str(gIndex) + string("] = a[") + num2str(aIndex) + string("];\n");
else
{
kernelString += string(" out_real[") + num2str(gIndex) + string("] = a[") + num2str(aIndex) + string("].x;\n");
kernelString += string(" out_imag[") + num2str(gIndex) + string("] = a[") + num2str(aIndex) + string("].y;\n");
}
}
static int
insertGlobalLoadsAndTranspose(string &kernelString, int N, int numWorkItemsPerXForm, int numXFormsPerWG, int R0, int mem_coalesce_width, clFFT_DataFormat dataFormat)
{
int log2NumWorkItemsPerXForm = (int) log2(numWorkItemsPerXForm);
int groupSize = numWorkItemsPerXForm * numXFormsPerWG;
int i, j;
int lMemSize = 0;
if(numXFormsPerWG > 1)
kernelString += string(" s = S & ") + num2str(numXFormsPerWG - 1) + string(";\n");
if(numWorkItemsPerXForm >= mem_coalesce_width)
{
if(numXFormsPerWG > 1)
{
kernelString += string(" ii = lId & ") + num2str(numWorkItemsPerXForm-1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str(log2NumWorkItemsPerXForm) + string(";\n");
kernelString += string(" if( !s || (groupId < get_num_groups(0)-1) || (jj < s) ) {\n");
kernelString += string(" offset = mad24( mad24(groupId, ") + num2str(numXFormsPerWG) + string(", jj), ") + num2str(N) + string(", ii );\n");
if(dataFormat == clFFT_InterleavedComplexFormat)
{
kernelString += string(" in += offset;\n");
kernelString += string(" out += offset;\n");
}
else
{
kernelString += string(" in_real += offset;\n");
kernelString += string(" in_imag += offset;\n");
kernelString += string(" out_real += offset;\n");
kernelString += string(" out_imag += offset;\n");
}
for(i = 0; i < R0; i++)
formattedLoad(kernelString, i, i*numWorkItemsPerXForm, dataFormat);
kernelString += string(" }\n");
}
else
{
kernelString += string(" ii = lId;\n");
kernelString += string(" jj = 0;\n");
kernelString += string(" offset = mad24(groupId, ") + num2str(N) + string(", ii);\n");
if(dataFormat == clFFT_InterleavedComplexFormat)
{
kernelString += string(" in += offset;\n");
kernelString += string(" out += offset;\n");
}
else
{
kernelString += string(" in_real += offset;\n");
kernelString += string(" in_imag += offset;\n");
kernelString += string(" out_real += offset;\n");
kernelString += string(" out_imag += offset;\n");
}
for(i = 0; i < R0; i++)
formattedLoad(kernelString, i, i*numWorkItemsPerXForm, dataFormat);
}
}
else if( N >= mem_coalesce_width )
{
int numInnerIter = N / mem_coalesce_width;
int numOuterIter = numXFormsPerWG / ( groupSize / mem_coalesce_width );
kernelString += string(" ii = lId & ") + num2str(mem_coalesce_width - 1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str((int)log2(mem_coalesce_width)) + string(";\n");
kernelString += string(" lMemStore = sMem + mad24( jj, ") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
kernelString += string(" offset = mad24( groupId, ") + num2str(numXFormsPerWG) + string(", jj);\n");
kernelString += string(" offset = mad24( offset, ") + num2str(N) + string(", ii );\n");
if(dataFormat == clFFT_InterleavedComplexFormat)
{
kernelString += string(" in += offset;\n");
kernelString += string(" out += offset;\n");
}
else
{
kernelString += string(" in_real += offset;\n");
kernelString += string(" in_imag += offset;\n");
kernelString += string(" out_real += offset;\n");
kernelString += string(" out_imag += offset;\n");
}
kernelString += string("if((groupId == get_num_groups(0)-1) && s) {\n");
for(i = 0; i < numOuterIter; i++ )
{
kernelString += string(" if( jj < s ) {\n");
for(j = 0; j < numInnerIter; j++ )
formattedLoad(kernelString, i * numInnerIter + j, j * mem_coalesce_width + i * ( groupSize / mem_coalesce_width ) * N, dataFormat);
kernelString += string(" }\n");
if(i != numOuterIter - 1)
kernelString += string(" jj += ") + num2str(groupSize / mem_coalesce_width) + string(";\n");
}
kernelString += string("}\n ");
kernelString += string("else {\n");
for(i = 0; i < numOuterIter; i++ )
{
for(j = 0; j < numInnerIter; j++ )
formattedLoad(kernelString, i * numInnerIter + j, j * mem_coalesce_width + i * ( groupSize / mem_coalesce_width ) * N, dataFormat);
}
kernelString += string("}\n");
kernelString += string(" ii = lId & ") + num2str(numWorkItemsPerXForm - 1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str(log2NumWorkItemsPerXForm) + string(";\n");
kernelString += string(" lMemLoad = sMem + mad24( jj, ") + num2str(N + numWorkItemsPerXForm) + string(", ii);\n");
for( i = 0; i < numOuterIter; i++ )
{
for( j = 0; j < numInnerIter; j++ )
{
kernelString += string(" lMemStore[") + num2str(j * mem_coalesce_width + i * ( groupSize / mem_coalesce_width ) * (N + numWorkItemsPerXForm )) + string("] = a[") +
num2str(i * numInnerIter + j) + string("].x;\n");
}
}
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < R0; i++ )
kernelString += string(" a[") + num2str(i) + string("].x = lMemLoad[") + num2str(i * numWorkItemsPerXForm) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < numOuterIter; i++ )
{
for( j = 0; j < numInnerIter; j++ )
{
kernelString += string(" lMemStore[") + num2str(j * mem_coalesce_width + i * ( groupSize / mem_coalesce_width ) * (N + numWorkItemsPerXForm )) + string("] = a[") +
num2str(i * numInnerIter + j) + string("].y;\n");
}
}
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < R0; i++ )
kernelString += string(" a[") + num2str(i) + string("].y = lMemLoad[") + num2str(i * numWorkItemsPerXForm) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG;
}
else
{
kernelString += string(" offset = mad24( groupId, ") + num2str(N * numXFormsPerWG) + string(", lId );\n");
if(dataFormat == clFFT_InterleavedComplexFormat)
{
kernelString += string(" in += offset;\n");
kernelString += string(" out += offset;\n");
}
else
{
kernelString += string(" in_real += offset;\n");
kernelString += string(" in_imag += offset;\n");
kernelString += string(" out_real += offset;\n");
kernelString += string(" out_imag += offset;\n");
}
kernelString += string(" ii = lId & ") + num2str(N-1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str((int)log2(N)) + string(";\n");
kernelString += string(" lMemStore = sMem + mad24( jj, ") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
kernelString += string("if((groupId == get_num_groups(0)-1) && s) {\n");
for( i = 0; i < R0; i++ )
{
kernelString += string(" if(jj < s )\n");
formattedLoad(kernelString, i, i*groupSize, dataFormat);
if(i != R0 - 1)
kernelString += string(" jj += ") + num2str(groupSize / N) + string(";\n");
}
kernelString += string("}\n");
kernelString += string("else {\n");
for( i = 0; i < R0; i++ )
{
formattedLoad(kernelString, i, i*groupSize, dataFormat);
}
kernelString += string("}\n");
if(numWorkItemsPerXForm > 1)
{
kernelString += string(" ii = lId & ") + num2str(numWorkItemsPerXForm - 1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str(log2NumWorkItemsPerXForm) + string(";\n");
kernelString += string(" lMemLoad = sMem + mad24( jj, ") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
}
else
{
kernelString += string(" ii = 0;\n");
kernelString += string(" jj = lId;\n");
kernelString += string(" lMemLoad = sMem + mul24( jj, ") + num2str(N + numWorkItemsPerXForm) + string(");\n");
}
for( i = 0; i < R0; i++ )
kernelString += string(" lMemStore[") + num2str(i * ( groupSize / N ) * ( N + numWorkItemsPerXForm )) + string("] = a[") + num2str(i) + string("].x;\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < R0; i++ )
kernelString += string(" a[") + num2str(i) + string("].x = lMemLoad[") + num2str(i * numWorkItemsPerXForm) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < R0; i++ )
kernelString += string(" lMemStore[") + num2str(i * ( groupSize / N ) * ( N + numWorkItemsPerXForm )) + string("] = a[") + num2str(i) + string("].y;\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < R0; i++ )
kernelString += string(" a[") + num2str(i) + string("].y = lMemLoad[") + num2str(i * numWorkItemsPerXForm) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG;
}
return lMemSize;
}
static int
insertGlobalStoresAndTranspose(string &kernelString, int N, int maxRadix, int Nr, int numWorkItemsPerXForm, int numXFormsPerWG, int mem_coalesce_width, clFFT_DataFormat dataFormat)
{
int groupSize = numWorkItemsPerXForm * numXFormsPerWG;
int i, j, k, ind;
int lMemSize = 0;
int numIter = maxRadix / Nr;
string indent = string("");
if( numWorkItemsPerXForm >= mem_coalesce_width )
{
if(numXFormsPerWG > 1)
{
kernelString += string(" if( !s || (groupId < get_num_groups(0)-1) || (jj < s) ) {\n");
indent = string(" ");
}
for(i = 0; i < maxRadix; i++)
{
j = i % numIter;
k = i / numIter;
ind = j * Nr + k;
formattedStore(kernelString, ind, i*numWorkItemsPerXForm, dataFormat);
}
if(numXFormsPerWG > 1)
kernelString += string(" }\n");
}
else if( N >= mem_coalesce_width )
{
int numInnerIter = N / mem_coalesce_width;
int numOuterIter = numXFormsPerWG / ( groupSize / mem_coalesce_width );
kernelString += string(" lMemLoad = sMem + mad24( jj, ") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
kernelString += string(" ii = lId & ") + num2str(mem_coalesce_width - 1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str((int)log2(mem_coalesce_width)) + string(";\n");
kernelString += string(" lMemStore = sMem + mad24( jj,") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
for( i = 0; i < maxRadix; i++ )
{
j = i % numIter;
k = i / numIter;
ind = j * Nr + k;
kernelString += string(" lMemLoad[") + num2str(i*numWorkItemsPerXForm) + string("] = a[") + num2str(ind) + string("].x;\n");
}
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < numOuterIter; i++ )
for( j = 0; j < numInnerIter; j++ )
kernelString += string(" a[") + num2str(i*numInnerIter + j) + string("].x = lMemStore[") + num2str(j*mem_coalesce_width + i*( groupSize / mem_coalesce_width )*(N + numWorkItemsPerXForm)) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < maxRadix; i++ )
{
j = i % numIter;
k = i / numIter;
ind = j * Nr + k;
kernelString += string(" lMemLoad[") + num2str(i*numWorkItemsPerXForm) + string("] = a[") + num2str(ind) + string("].y;\n");
}
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < numOuterIter; i++ )
for( j = 0; j < numInnerIter; j++ )
kernelString += string(" a[") + num2str(i*numInnerIter + j) + string("].y = lMemStore[") + num2str(j*mem_coalesce_width + i*( groupSize / mem_coalesce_width )*(N + numWorkItemsPerXForm)) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
kernelString += string("if((groupId == get_num_groups(0)-1) && s) {\n");
for(i = 0; i < numOuterIter; i++ )
{
kernelString += string(" if( jj < s ) {\n");
for(j = 0; j < numInnerIter; j++ )
formattedStore(kernelString, i*numInnerIter + j, j*mem_coalesce_width + i*(groupSize/mem_coalesce_width)*N, dataFormat);
kernelString += string(" }\n");
if(i != numOuterIter - 1)
kernelString += string(" jj += ") + num2str(groupSize / mem_coalesce_width) + string(";\n");
}
kernelString += string("}\n");
kernelString += string("else {\n");
for(i = 0; i < numOuterIter; i++ )
{
for(j = 0; j < numInnerIter; j++ )
formattedStore(kernelString, i*numInnerIter + j, j*mem_coalesce_width + i*(groupSize/mem_coalesce_width)*N, dataFormat);
}
kernelString += string("}\n");
lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG;
}
else
{
kernelString += string(" lMemLoad = sMem + mad24( jj,") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
kernelString += string(" ii = lId & ") + num2str(N - 1) + string(";\n");
kernelString += string(" jj = lId >> ") + num2str((int) log2(N)) + string(";\n");
kernelString += string(" lMemStore = sMem + mad24( jj,") + num2str(N + numWorkItemsPerXForm) + string(", ii );\n");
for( i = 0; i < maxRadix; i++ )
{
j = i % numIter;
k = i / numIter;
ind = j * Nr + k;
kernelString += string(" lMemLoad[") + num2str(i*numWorkItemsPerXForm) + string("] = a[") + num2str(ind) + string("].x;\n");
}
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < maxRadix; i++ )
kernelString += string(" a[") + num2str(i) + string("].x = lMemStore[") + num2str(i*( groupSize / N )*( N + numWorkItemsPerXForm )) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < maxRadix; i++ )
{
j = i % numIter;
k = i / numIter;
ind = j * Nr + k;
kernelString += string(" lMemLoad[") + num2str(i*numWorkItemsPerXForm) + string("] = a[") + num2str(ind) + string("].y;\n");
}
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
for( i = 0; i < maxRadix; i++ )
kernelString += string(" a[") + num2str(i) + string("].y = lMemStore[") + num2str(i*( groupSize / N )*( N + numWorkItemsPerXForm )) + string("];\n");
kernelString += string(" barrier( CLK_LOCAL_MEM_FENCE );\n");
kernelString += string("if((groupId == get_num_groups(0)-1) && s) {\n");
for( i = 0; i < maxRadix; i++ )
{
kernelString += string(" if(jj < s ) {\n");
formattedStore(kernelString, i, i*groupSize, dataFormat);
kernelString += string(" }\n");
if( i != maxRadix - 1)
kernelString += string(" jj +=") + num2str(groupSize / N) + string(";\n");
}
kernelString += string("}\n");
kernelString += string("else {\n");
for( i = 0; i < maxRadix; i++ )
{
formattedStore(kernelString, i, i*groupSize, dataFormat);
}
kernelString += string("}\n");
lMemSize = (N + numWorkItemsPerXForm) * numXFormsPerWG;
}
return lMemSize;
}
static void
insertfftKernel(string &kernelString, int Nr, int numIter)
{
int i;
for(i = 0; i < numIter; i++)
{
kernelString += string(" fftKernel") + num2str(Nr) + string("(a+") + num2str(i*Nr) + string(", dir);\n");
}
}
static void
insertTwiddleKernel(string &kernelString, int Nr, int numIter, int Nprev, int len, int numWorkItemsPerXForm)
{
int z, k;
int logNPrev = (int)log2(Nprev);
for(z = 0; z < numIter; z++)
{
if(z == 0)
{
if(Nprev > 1)
kernelString += string(" angf = (float) (ii >> ") + num2str(logNPrev) + string(");\n");
else
kernelString += string(" angf = (float) ii;\n");
}
else
{
if(Nprev > 1)
kernelString += string(" angf = (float) ((") + num2str(z*numWorkItemsPerXForm) + string(" + ii) >>") + num2str(logNPrev) + string(");\n");
else
kernelString += string(" angf = (float) (") + num2str(z*numWorkItemsPerXForm) + string(" + ii);\n");
}
for(k = 1; k < Nr; k++) {
int ind = z*Nr + k;
//float fac = (float) (2.0 * M_PI * (double) k / (double) len);
kernelString += string(" ang = dir * ( 2.0f * M_PI * ") + num2str(k) + string(".0f / ") + num2str(len) + string(".0f )") + string(" * angf;\n");
kernelString += string(" w = (float2)(native_cos(ang), native_sin(ang));\n");
kernelString += string(" a[") + num2str(ind) + string("] = complexMul(a[") + num2str(ind) + string("], w);\n");
}
}
}
static int
getPadding(int numWorkItemsPerXForm, int Nprev, int numWorkItemsReq, int numXFormsPerWG, int Nr, int numBanks, int *offset, int *midPad)
{
if((numWorkItemsPerXForm <= Nprev) || (Nprev >= numBanks))
*offset = 0;
else {
int numRowsReq = ((numWorkItemsPerXForm < numBanks) ? numWorkItemsPerXForm : numBanks) / Nprev;
int numColsReq = 1;
if(numRowsReq > Nr)
numColsReq = numRowsReq / Nr;
numColsReq = Nprev * numColsReq;
*offset = numColsReq;
}
if(numWorkItemsPerXForm >= numBanks || numXFormsPerWG == 1)
*midPad = 0;
else {
int bankNum = ( (numWorkItemsReq + *offset) * Nr ) & (numBanks - 1);
if( bankNum >= numWorkItemsPerXForm )
*midPad = 0;
else
*midPad = numWorkItemsPerXForm - bankNum;
}
int lMemSize = ( numWorkItemsReq + *offset) * Nr * numXFormsPerWG + *midPad * (numXFormsPerWG - 1);
return lMemSize;
}
static void
insertLocalStores(string &kernelString, int numIter, int Nr, int numWorkItemsPerXForm, int numWorkItemsReq, int offset, string &comp)
{
int z, k;
for(z = 0; z < numIter; z++) {
for(k = 0; k < Nr; k++) {
int index = k*(numWorkItemsReq + offset) + z*numWorkItemsPerXForm;
kernelString += string(" lMemStore[") + num2str(index) + string("] = a[") + num2str(z*Nr + k) + string("].") + comp + string(";\n");
}
}
kernelString += string(" barrier(CLK_LOCAL_MEM_FENCE);\n");
}
static void
insertLocalLoads(string &kernelString, int n, int Nr, int Nrn, int Nprev, int Ncurr, int numWorkItemsPerXForm, int numWorkItemsReq, int offset, string &comp)
{
int numWorkItemsReqN = n / Nrn;
int interBlockHNum = max( Nprev / numWorkItemsPerXForm, 1 );
int interBlockHStride = numWorkItemsPerXForm;
int vertWidth = max(numWorkItemsPerXForm / Nprev, 1);
vertWidth = min( vertWidth, Nr);
int vertNum = Nr / vertWidth;
int vertStride = ( n / Nr + offset ) * vertWidth;
int iter = max( numWorkItemsReqN / numWorkItemsPerXForm, 1);
int intraBlockHStride = (numWorkItemsPerXForm / (Nprev*Nr)) > 1 ? (numWorkItemsPerXForm / (Nprev*Nr)) : 1;
intraBlockHStride *= Nprev;
int stride = numWorkItemsReq / Nrn;
int i;
for(i = 0; i < iter; i++) {
int ii = i / (interBlockHNum * vertNum);
int zz = i % (interBlockHNum * vertNum);
int jj = zz % interBlockHNum;
int kk = zz / interBlockHNum;
int z;
for(z = 0; z < Nrn; z++) {
int st = kk * vertStride + jj * interBlockHStride + ii * intraBlockHStride + z * stride;
kernelString += string(" a[") + num2str(i*Nrn + z) + string("].") + comp + string(" = lMemLoad[") + num2str(st) + string("];\n");
}
}
kernelString += string(" barrier(CLK_LOCAL_MEM_FENCE);\n");
}
static void
insertLocalLoadIndexArithmatic(string &kernelString, int Nprev, int Nr, int numWorkItemsReq, int numWorkItemsPerXForm, int numXFormsPerWG, int offset, int midPad)
{
int Ncurr = Nprev * Nr;
int logNcurr = (int)log2(Ncurr);
int logNprev = (int)log2(Nprev);
int incr = (numWorkItemsReq + offset) * Nr + midPad;
if(Ncurr < numWorkItemsPerXForm)
{
if(Nprev == 1)
kernelString += string(" j = ii & ") + num2str(Ncurr - 1) + string(";\n");
else
kernelString += string(" j = (ii & ") + num2str(Ncurr - 1) + string(") >> ") + num2str(logNprev) + string(";\n");
if(Nprev == 1)
kernelString += string(" i = ii >> ") + num2str(logNcurr) + string(";\n");
else
kernelString += string(" i = mad24(ii >> ") + num2str(logNcurr) + string(", ") + num2str(Nprev) + string(", ii & ") + num2str(Nprev - 1) + string(");\n");
}
else
{
if(Nprev == 1)
kernelString += string(" j = ii;\n");
else
kernelString += string(" j = ii >> ") + num2str(logNprev) + string(";\n");
if(Nprev == 1)
kernelString += string(" i = 0;\n");
else
kernelString += string(" i = ii & ") + num2str(Nprev - 1) + string(";\n");
}
if(numXFormsPerWG > 1)
kernelString += string(" i = mad24(jj, ") + num2str(incr) + string(", i);\n");
kernelString += string(" lMemLoad = sMem + mad24(j, ") + num2str(numWorkItemsReq + offset) + string(", i);\n");
}
static void
insertLocalStoreIndexArithmatic(string &kernelString, int numWorkItemsReq, int numXFormsPerWG, int Nr, int offset, int midPad)
{
if(numXFormsPerWG == 1) {
kernelString += string(" lMemStore = sMem + ii;\n");
}
else {
kernelString += string(" lMemStore = sMem + mad24(jj, ") + num2str((numWorkItemsReq + offset)*Nr + midPad) + string(", ii);\n");
}
}
static void
createLocalMemfftKernelString(cl_fft_plan *plan)
{
unsigned int radixArray[10];
unsigned int numRadix;
unsigned int n = plan->n.x;
assert(n <= plan->max_work_item_per_workgroup * plan->max_radix && "signal lenght too big for local mem fft\n");
getRadixArray(n, radixArray, &numRadix, 0);
assert(numRadix > 0 && "no radix array supplied\n");
if(n/radixArray[0] > plan->max_work_item_per_workgroup)
getRadixArray(n, radixArray, &numRadix, plan->max_radix);
assert(radixArray[0] <= plan->max_radix && "max radix choosen is greater than allowed\n");
assert(n/radixArray[0] <= plan->max_work_item_per_workgroup && "required work items per xform greater than maximum work items allowed per work group for local mem fft\n");
unsigned int tmpLen = 1;
unsigned int i;
for(i = 0; i < numRadix; i++)
{
assert( radixArray[i] && !( (radixArray[i] - 1) & radixArray[i] ) );
tmpLen *= radixArray[i];
}
assert(tmpLen == n && "product of radices choosen doesnt match the length of signal\n");
int offset, midPad;
string localString(""), kernelName("");
clFFT_DataFormat dataFormat = plan->format;
string *kernelString = plan->kernel_string;
cl_fft_kernel_info **kInfo = &plan->kernel_info;
int kCount = 0;
while(*kInfo)
{
kInfo = &(*kInfo)->next;
kCount++;
}
kernelName = string("fft") + num2str(kCount);
*kInfo = (cl_fft_kernel_info *) malloc(sizeof(cl_fft_kernel_info));
(*kInfo)->kernel = 0;
(*kInfo)->lmem_size = 0;
(*kInfo)->num_workgroups = 0;
(*kInfo)->num_workitems_per_workgroup = 0;
(*kInfo)->dir = cl_fft_kernel_x;
(*kInfo)->in_place_possible = 1;
(*kInfo)->next = NULL;
(*kInfo)->kernel_name = (char *) malloc(sizeof(char)*(kernelName.size()+1));
strcpy((*kInfo)->kernel_name, kernelName.c_str());
unsigned int numWorkItemsPerXForm = n / radixArray[0];
unsigned int numWorkItemsPerWG = numWorkItemsPerXForm <= 64 ? 64 : numWorkItemsPerXForm;
assert(numWorkItemsPerWG <= plan->max_work_item_per_workgroup);
int numXFormsPerWG = numWorkItemsPerWG / numWorkItemsPerXForm;
(*kInfo)->num_workgroups = 1;
(*kInfo)->num_xforms_per_workgroup = numXFormsPerWG;
(*kInfo)->num_workitems_per_workgroup = numWorkItemsPerWG;
unsigned int *N = radixArray;
unsigned int maxRadix = N[0];
unsigned int lMemSize = 0;
insertVariables(localString, maxRadix);
lMemSize = insertGlobalLoadsAndTranspose(localString, n, numWorkItemsPerXForm, numXFormsPerWG, maxRadix, plan->min_mem_coalesce_width, dataFormat);
(*kInfo)->lmem_size = (lMemSize > (*kInfo)->lmem_size) ? lMemSize : (*kInfo)->lmem_size;
string xcomp = string("x");
string ycomp = string("y");
unsigned int Nprev = 1;
unsigned int len = n;
unsigned int r;
for(r = 0; r < numRadix; r++)
{
int numIter = N[0] / N[r];
int numWorkItemsReq = n / N[r];
int Ncurr = Nprev * N[r];
insertfftKernel(localString, N[r], numIter);
if(r < (numRadix - 1)) {
insertTwiddleKernel(localString, N[r], numIter, Nprev, len, numWorkItemsPerXForm);
lMemSize = getPadding(numWorkItemsPerXForm, Nprev, numWorkItemsReq, numXFormsPerWG, N[r], plan->num_local_mem_banks, &offset, &midPad);
(*kInfo)->lmem_size = (lMemSize > (*kInfo)->lmem_size) ? lMemSize : (*kInfo)->lmem_size;
insertLocalStoreIndexArithmatic(localString, numWorkItemsReq, numXFormsPerWG, N[r], offset, midPad);
insertLocalLoadIndexArithmatic(localString, Nprev, N[r], numWorkItemsReq, numWorkItemsPerXForm, numXFormsPerWG, offset, midPad);
insertLocalStores(localString, numIter, N[r], numWorkItemsPerXForm, numWorkItemsReq, offset, xcomp);
insertLocalLoads(localString, n, N[r], N[r+1], Nprev, Ncurr, numWorkItemsPerXForm, numWorkItemsReq, offset, xcomp);
insertLocalStores(localString, numIter, N[r], numWorkItemsPerXForm, numWorkItemsReq, offset, ycomp);
insertLocalLoads(localString, n, N[r], N[r+1], Nprev, Ncurr, numWorkItemsPerXForm, numWorkItemsReq, offset, ycomp);
Nprev = Ncurr;
len = len / N[r];
}
}
lMemSize = insertGlobalStoresAndTranspose(localString, n, maxRadix, N[numRadix - 1], numWorkItemsPerXForm, numXFormsPerWG, plan->min_mem_coalesce_width, dataFormat);
(*kInfo)->lmem_size = (lMemSize > (*kInfo)->lmem_size) ? lMemSize : (*kInfo)->lmem_size;
insertHeader(*kernelString, kernelName, dataFormat);
*kernelString += string("{\n");
if((*kInfo)->lmem_size)
*kernelString += string(" __local float sMem[") + num2str((*kInfo)->lmem_size) + string("];\n");
*kernelString += localString;
*kernelString += string("}\n");
}
// For n larger than what can be computed using local memory fft, global transposes
// multiple kernel launces is needed. For these sizes, n can be decomposed using
// much larger base radices i.e. say n = 262144 = 128 x 64 x 32. Thus three kernel
// launches will be needed, first computing 64 x 32, length 128 ffts, second computing
// 128 x 32 length 64 ffts, and finally a kernel computing 128 x 64 length 32 ffts.
// Each of these base radices can futher be divided into factors so that each of these
// base ffts can be computed within one kernel launch using in-register ffts and local
// memory transposes i.e for the first kernel above which computes 64 x 32 ffts on length
// 128, 128 can be decomposed into 128 = 16 x 8 i.e. 8 work items can compute 8 length
// 16 ffts followed by transpose using local memory followed by each of these eight
// work items computing 2 length 8 ffts thus computing 16 length 8 ffts in total. This
// means only 8 work items are needed for computing one length 128 fft. If we choose
// work group size of say 64, we can compute 64/8 = 8 length 128 ffts within one
// work group. Since we need to compute 64 x 32 length 128 ffts in first kernel, this
// means we need to launch 64 x 32 / 8 = 256 work groups with 64 work items in each
// work group where each work group is computing 8 length 128 ffts where each length
// 128 fft is computed by 8 work items. Same logic can be applied to other two kernels
// in this example. Users can play with difference base radices and difference
// decompositions of base radices to generates different kernels and see which gives
// best performance. Following function is just fixed to use 128 as base radix
void
getGlobalRadixInfo(int n, int *radix, int *R1, int *R2, int *numRadices)
{
int baseRadix = min(n, 128);
int numR = 0;
int N = n;
while(N > baseRadix)
{
N /= baseRadix;
numR++;
}
for(int i = 0; i < numR; i++)
radix[i] = baseRadix;
radix[numR] = N;
numR++;
*numRadices = numR;
for(int i = 0; i < numR; i++)
{
int B = radix[i];
if(B <= 8)
{
R1[i] = B;
R2[i] = 1;
continue;
}
int r1 = 2;
int r2 = B / r1;
while(r2 > r1)
{
r1 *=2;
r2 = B / r1;
}
R1[i] = r1;
R2[i] = r2;
}
}
static void
createGlobalFFTKernelString(cl_fft_plan *plan, int n, int BS, cl_fft_kernel_dir dir, int vertBS)
{
int i, j, k, t;
int radixArr[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int R1Arr[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int R2Arr[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int radix, R1, R2;
int numRadices;
int maxThreadsPerBlock = plan->max_work_item_per_workgroup;
int maxArrayLen = plan->max_radix;
int batchSize = plan->min_mem_coalesce_width;
clFFT_DataFormat dataFormat = plan->format;
int vertical = (dir == cl_fft_kernel_x) ? 0 : 1;
getGlobalRadixInfo(n, radixArr, R1Arr, R2Arr, &numRadices);
int numPasses = numRadices;
string localString(""), kernelName("");
string *kernelString = plan->kernel_string;
cl_fft_kernel_info **kInfo = &plan->kernel_info;
int kCount = 0;
while(*kInfo)
{
kInfo = &(*kInfo)->next;
kCount++;
}
int N = n;
int m = (int)log2(n);
int Rinit = vertical ? BS : 1;
batchSize = vertical ? min(BS, batchSize) : batchSize;
int passNum;
for(passNum = 0; passNum < numPasses; passNum++)
{
localString.clear();
kernelName.clear();
radix = radixArr[passNum];
R1 = R1Arr[passNum];
R2 = R2Arr[passNum];
int strideI = Rinit;
for(i = 0; i < numPasses; i++)
if(i != passNum)
strideI *= radixArr[i];
int strideO = Rinit;
for(i = 0; i < passNum; i++)
strideO *= radixArr[i];
int threadsPerXForm = R2;
batchSize = R2 == 1 ? plan->max_work_item_per_workgroup : batchSize;
batchSize = min(batchSize, strideI);
int threadsPerBlock = batchSize * threadsPerXForm;
threadsPerBlock = min(threadsPerBlock, maxThreadsPerBlock);
batchSize = threadsPerBlock / threadsPerXForm;
assert(R2 <= R1);
assert(R1*R2 == radix);
assert(R1 <= maxArrayLen);
assert(threadsPerBlock <= maxThreadsPerBlock);
int numIter = R1 / R2;
int gInInc = threadsPerBlock / batchSize;
int lgStrideO = (int)log2(strideO);
int numBlocksPerXForm = strideI / batchSize;
int numBlocks = numBlocksPerXForm;
if(!vertical)
numBlocks *= BS;
else
numBlocks *= vertBS;
kernelName = string("fft") + num2str(kCount);
*kInfo = (cl_fft_kernel_info *) malloc(sizeof(cl_fft_kernel_info));
(*kInfo)->kernel = 0;
if(R2 == 1)
(*kInfo)->lmem_size = 0;
else
{
if(strideO == 1)