forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_test.py
207 lines (167 loc) · 7.76 KB
/
resnet_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from official.resnet import resnet # pylint: disable=g-bad-import-order
class BlockTest(tf.test.TestCase):
def dense_run(self, tf_seed):
"""Simple generation of one random float and a single node dense network.
The subsequent more involved tests depend on the ability to correctly seed
TensorFlow. In the event that that process does not function as expected,
the simple dense tests will fail indicating that the issue is with the
tests rather than the ResNet functions.
Args:
tf_seed: Random seed for TensorFlow
Returns:
The generated random number and result of the dense network.
"""
with self.test_session(graph=tf.Graph()) as sess:
tf.set_random_seed(tf_seed)
x = tf.random_uniform((1, 1))
y = tf.layers.dense(inputs=x, units=1)
init = tf.global_variables_initializer()
sess.run(init)
return x.eval()[0, 0], y.eval()[0, 0]
def make_projection(self, filters_out, strides, data_format):
"""1D convolution with stride projector.
Args:
filters_out: Number of filters in the projection.
strides: Stride length for convolution.
data_format: channels_first or channels_last
Returns:
A 1 wide CNN projector function.
"""
def projection_shortcut(inputs):
return resnet.conv2d_fixed_padding(
inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
data_format=data_format)
return projection_shortcut
def resnet_block_run(self, tf_seed, batch_size, bottleneck, projection,
version, width, channels):
"""Test whether resnet block construction has changed.
This function runs ResNet block construction under a variety of different
conditions.
Args:
tf_seed: Random seed for TensorFlow
batch_size: Number of points in the fake image. This is needed due to
batch normalization.
bottleneck: Whether or not to use bottleneck layers.
projection: Whether or not to project the input.
version: Which version of ResNet to test.
width: The width of the fake image.
channels: The number of channels in the fake image.
Returns:
The size of the block output, as well as several check values.
"""
data_format = "channels_last"
if version == 1:
block_fn = resnet._building_block_v1
if bottleneck:
block_fn = resnet._bottleneck_block_v1
else:
block_fn = resnet._building_block_v2
if bottleneck:
block_fn = resnet._bottleneck_block_v2
with self.test_session(graph=tf.Graph()) as sess:
tf.set_random_seed(tf_seed)
strides = 1
channels_out = channels
projection_shortcut = None
if projection:
strides = 2
channels_out *= strides
projection_shortcut = self.make_projection(
filters_out=channels_out, strides=strides, data_format=data_format)
filters = channels_out
if bottleneck:
filters = channels_out // 4
x = tf.random_uniform((batch_size, width, width, channels))
y = block_fn(inputs=x, filters=filters, training=True,
projection_shortcut=projection_shortcut, strides=strides,
data_format=data_format)
init = tf.global_variables_initializer()
sess.run(init)
y_array = y.eval()
y_flat = y_array.flatten()
return y_array.shape, (y_flat[0], y_flat[-1], np.sum(y_flat))
def test_dense_0(self):
"""Sanity check 0 on dense layer."""
computed = self.dense_run(1813835975)
tf.assert_equal(computed, (0.8760674, 0.2547844))
def test_dense_1(self):
"""Sanity check 1 on dense layer."""
computed = self.dense_run(3574260356)
tf.assert_equal(computed, (0.75590825, 0.5339718))
def test_bottleneck_v1_width_32_channels_64_batch_size_32_with_proj(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
599400476, batch_size=32, bottleneck=True, projection=True,
version=1, width=32, channels=64)
tf.assert_equal(computed_size, (32, 16, 16, 128))
tf.assert_equal(computed_values, (0.0, 0.92648625, 587702.4))
def test_bottleneck_v2_width_32_channels_64_batch_size_32_with_proj(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
309580726, batch_size=32, bottleneck=True, projection=True,
version=2, width=32, channels=64)
tf.assert_equal(computed_size, (32, 16, 16, 128))
tf.assert_equal(computed_values, (-1.8759897, -0.5546854, -12860.312))
def test_bottleneck_v1_width_32_channels_64_batch_size_32(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
1969060699, batch_size=32, bottleneck=True, projection=False,
version=1, width=32, channels=64)
tf.assert_equal(computed_size, (32, 32, 32, 64))
tf.assert_equal(computed_values, (0.10141289, 0.0, 1483393.0))
def test_bottleneck_v2_width_32_channels_64_batch_size_32(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
1716369119, batch_size=32, bottleneck=True, projection=False,
version=2, width=32, channels=64)
tf.assert_equal(computed_size, (32, 32, 32, 64))
tf.assert_equal(computed_values, (1.4106897, 0.7455499, 834762.75))
def test_building_v1_width_32_channels_64_batch_size_32_with_proj(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
1455996458, batch_size=32, bottleneck=False, projection=True,
version=1, width=32, channels=64)
tf.assert_equal(computed_size, (32, 16, 16, 128))
tf.assert_equal(computed_values, (0.0, 0.0, 591701.3))
def test_building_v2_width_32_channels_64_batch_size_32_with_proj(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
2770738568, batch_size=32, bottleneck=False, projection=True,
version=2, width=32, channels=64)
tf.assert_equal(computed_size, (32, 16, 16, 128))
tf.assert_equal(computed_values, (-0.1908517, 0.2792631, -45776.055))
def test_building_v1_width_32_channels_64_batch_size_32(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
1262621774, batch_size=32, bottleneck=False, projection=False,
version=1, width=32, channels=64)
tf.assert_equal(computed_size, (32, 32, 32, 64))
tf.assert_equal(computed_values, (0.0, 0.0, 1493558.9))
def test_building_v2_width_32_channels_64_batch_size_32(self):
"""Test of a single ResNet block."""
computed_size, computed_values = self.resnet_block_run(
3856195393, batch_size=32, bottleneck=False, projection=False,
version=2, width=32, channels=64)
tf.assert_equal(computed_size, (32, 32, 32, 64))
tf.assert_equal(computed_values, (-0.12920928, 0.38566422, 1157867.9))
if __name__ == "__main__":
tf.test.main()