@@ -3546,7 +3546,6 @@ def react_aggregate( # noqa: C901
3546
3546
num_robust_influence_samples_per_case : t .Optional [int ] = None ,
3547
3547
num_samples : t .Optional [int ] = None ,
3548
3548
prediction_stats_action_feature : t .Optional [str ] = None ,
3549
- residuals_hyperparameter_feature : t .Optional [str ] = None ,
3550
3549
robust_hyperparameters : t .Optional [bool ] = None ,
3551
3550
sample_model_fraction : t .Optional [float ] = None ,
3552
3551
sub_model_size : t .Optional [int ] = None ,
@@ -3748,12 +3747,6 @@ def react_aggregate( # noqa: C901
3748
3747
Total sample size of model to use (using sampling with replacement)
3749
3748
for all non-robust computation. Defaults to 1000.
3750
3749
If specified overrides sample_model_fraction.```
3751
- residuals_hyperparameter_feature : str, optional
3752
- When calculating residuals and prediction stats, uses this target
3753
- features's hyperparameters. The trainee must have been analyzed with
3754
- this feature as the action feature first. If not provided, by default
3755
- residuals and prediction stats uses targetless hyperparameters. Targetless
3756
- hyperparameters may also be selected using an empty string: "".
3757
3750
robust_hyperparameters : bool, optional
3758
3751
When specified, will attempt to return residuals that were
3759
3752
computed using hyperparameters with the specified robust or
@@ -3832,7 +3825,6 @@ def react_aggregate( # noqa: C901
3832
3825
stats = self .execute (trainee_id , "react_aggregate" , {
3833
3826
"action_feature" : action_feature ,
3834
3827
"action_features" : action_features ,
3835
- "residuals_hyperparameter_feature" : residuals_hyperparameter_feature ,
3836
3828
"context_features" : context_features ,
3837
3829
"confusion_matrix_min_count" : confusion_matrix_min_count ,
3838
3830
"details" : details ,
0 commit comments