-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ALL_LSTM.py
129 lines (113 loc) · 5.12 KB
/
train_ALL_LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# coding=utf-8
# @Author : bamtercelboo
# @Datetime : 2018/07/19 22:35
# @File : train_ALL_LSTM.py
# @Last Modify Time : 2018/07/19 22:35
# @Contact : bamtercelboo@{gmail.com, 163.com}
import os
import sys
import torch
import torch.autograd as autograd
import torch.nn.functional as F
import torch.nn.utils as utils
import torch.optim.lr_scheduler as lr_scheduler
import shutil
import random
import numpy as np
from DataUtils.Common import seed_num
torch.manual_seed(seed_num)
random.seed(seed_num)
def train(train_iter, dev_iter, test_iter, model, args):
if args.cuda:
model.cuda()
if args.Adam is True:
print("Adam Training......")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
elif args.SGD is True:
print("SGD Training.......")
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay,
momentum=args.momentum_value)
elif args.Adadelta is True:
print("Adadelta Training.......")
optimizer = torch.optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
steps = 0
model_count = 0
best_accuracy = Best_Result()
model.train()
for epoch in range(1, args.epochs+1):
steps = 0
print("\n## The {} Epoch, All {} Epochs ! ##".format(epoch, args.epochs))
for batch in train_iter:
feature, target = batch.text, batch.label.data.sub_(1)
if args.cuda is True:
feature, target = feature.cuda(), target.cuda()
target = autograd.Variable(target) # question 1
optimizer.zero_grad()
logit = model(feature)
loss = F.cross_entropy(logit, target)
loss.backward()
if args.init_clip_max_norm is not None:
utils.clip_grad_norm(model.parameters(), max_norm=args.init_clip_max_norm)
optimizer.step()
steps += 1
if steps % args.log_interval == 0:
train_size = len(train_iter.dataset)
corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
accuracy = float(corrects)/batch.batch_size * 100.0
sys.stdout.write(
'\rBatch[{}/{}] - loss: {:.6f} acc: {:.4f}%({}/{})'.format(steps,
train_size,
loss.data[0],
accuracy,
corrects,
batch.batch_size))
if steps % args.test_interval == 0:
print("\nDev Accuracy: ", end="")
eval(dev_iter, model, args, best_accuracy, epoch, test=False)
print("Test Accuracy: ", end="")
eval(test_iter, model, args, best_accuracy, epoch, test=True)
if steps % args.save_interval == 0:
if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir)
save_prefix = os.path.join(args.save_dir, 'snapshot')
save_path = '{}_steps{}.pt'.format(save_prefix, steps)
torch.save(model.state_dict(), save_path)
if os.path.isfile(save_path) and args.rm_model is True:
os.remove(save_path)
model_count += 1
return model_count
def eval(data_iter, model, args, best_accuracy, epoch, test=False):
model.eval()
corrects, avg_loss = 0, 0
for batch in data_iter:
feature, target = batch.text, batch.label
target.data.sub_(1)
if args.cuda is True:
feature, target = feature.cuda(), target.cuda()
logit = model(feature)
loss = F.cross_entropy(logit, target, size_average=False)
avg_loss += loss.data[0]
corrects += (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
size = len(data_iter.dataset)
avg_loss = loss.data[0]/size
accuracy = float(corrects)/size * 100.0
model.train()
print(' Evaluation - loss: {:.6f} acc: {:.4f}%({}/{}) '.format(avg_loss, accuracy, corrects, size))
if test is False:
if accuracy >= best_accuracy.best_dev_accuracy:
best_accuracy.best_dev_accuracy = accuracy
best_accuracy.best_epoch = epoch
best_accuracy.best_test = True
if test is True and best_accuracy.best_test is True:
best_accuracy.accuracy = accuracy
if test is True:
print("The Current Best Dev Accuracy: {:.4f}, and Test Accuracy is :{:.4f}, locate on {} epoch.\n".format(
best_accuracy.best_dev_accuracy, best_accuracy.accuracy, best_accuracy.best_epoch))
if test is True:
best_accuracy.best_test = False
class Best_Result:
def __init__(self):
self.best_dev_accuracy = -1
self.best_accuracy = -1
self.best_epoch = 1
self.best_test = False
self.accuracy = -1