-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
454 lines (417 loc) · 20.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# coding=utf-8
# @Author : bamtercelboo
# @Datetime : 2018/07/19 22:35
# @File : main.py
# @Last Modify Time : 2018/07/19 22:35
# @Contact : bamtercelboo@{gmail.com, 163.com}
import os
import argparse
import datetime
import Config.config as configurable
import torch
import torchtext.data as data
from models.model_CNN import CNN_Text
from models.model_HighWay_CNN import HighWay_CNN
from models.model_DeepCNN import DEEP_CNN
from models.model_LSTM import LSTM
from models.model_BiLSTM import BiLSTM
from models.model_CNN_LSTM import CNN_LSTM
from models.model_CLSTM import CLSTM
from models.model_GRU import GRU
from models.model_CBiLSTM import CBiLSTM
from models.model_CGRU import CGRU
from models.model_CNN_BiLSTM import CNN_BiLSTM
from models.model_BiGRU import BiGRU
from models.model_CNN_BiGRU import CNN_BiGRU
from models.model_CNN_MUI import CNN_MUI
from models.model_DeepCNN_MUI import DEEP_CNN_MUI
from models.model_BiLSTM_1 import BiLSTM_1
from models.model_HighWay_BiLSTM_1 import HighWay_BiLSTM_1
import train_ALL_CNN
import train_ALL_LSTM
from DataLoader import mydatasets_self_five
from DataLoader import mydatasets_self_two
from DataUtils.Load_Pretrained_Embed import load_pretrained_emb_zeros, load_pretrained_emb_avg, load_pretrained_emb_Embedding, load_pretrained_emb_uniform
import multiprocessing as mu
import shutil
import numpy as np
import random
# solve encoding
from imp import reload
import sys
defaultencoding = 'utf-8'
if sys.getdefaultencoding() != defaultencoding:
reload(sys)
sys.setdefaultencoding(defaultencoding)
# random seed
from DataUtils.Common import seed_num, pad, unk
torch.manual_seed(seed_num)
random.seed(seed_num)
torch.manual_seed(seed_num)
np.random.seed(seed_num)
random.seed(seed_num)
torch.cuda.manual_seed(seed_num)
def mrs_two(path, train_name, dev_name, test_name, char_data, text_field, label_field, **kargs):
"""
:function: load two-classification data
:param path:
:param train_name: train path
:param dev_name: dev path
:param test_name: test path
:param char_data: char data
:param text_field: text dict for finetune
:param label_field: label dict for finetune
:param kargs: others arguments
:return: batch train, batch dev, batch test
"""
train_data, dev_data, test_data = mydatasets_self_two.MR.splits(path, train_name, dev_name, test_name, char_data, text_field, label_field)
print("len(train_data) {} ".format(len(train_data)))
text_field.build_vocab(train_data.text, min_freq=config.min_freq)
# text_field.build_vocab(train_data.text, dev_data.text, test_data.text, min_freq=config.min_freq)
label_field.build_vocab(train_data.label)
train_iter, dev_iter, test_iter = data.Iterator.splits((train_data, dev_data, test_data),batch_sizes=(config.batch_size, len(dev_data), len(test_data)), **kargs)
return train_iter, dev_iter, test_iter
def mrs_two_mui(path, train_name, dev_name, test_name, char_data, text_field, label_field, static_text_field, static_label_field, **kargs):
"""
:function: load two-classification data
:param path:
:param train_name: train path
:param dev_name: dev path
:param test_name: test path
:param char_data: char data
:param text_field: text dict for finetune
:param label_field: label dict for finetune
:param static_text_field: text dict for static(no finetune)
:param static_label_field: label dict for static(no finetune)
:param kargs: others arguments
:return: batch train, batch dev, batch test
"""
train_data, dev_data, test_data = mydatasets_self_two.MR.splits(path, train_name, dev_name, test_name, char_data, text_field, label_field)
static_train_data, static_dev_data, static_test_data = mydatasets_self_two.MR.splits(path, train_name, dev_name, test_name,char_data, static_text_field, static_label_field)
print("len(train_data) {} ".format(len(train_data)))
print("len(static_train_data) {} ".format(len(static_train_data)))
text_field.build_vocab(train_data, min_freq=config.min_freq)
label_field.build_vocab(train_data)
static_text_field.build_vocab(static_train_data, static_dev_data, static_test_data, min_freq=config.min_freq)
static_label_field.build_vocab(static_train_data, static_dev_data, static_test_data)
train_iter, dev_iter, test_iter = data.Iterator.splits((train_data, dev_data, test_data), batch_sizes=(config.batch_size, len(dev_data), len(test_data)), **kargs)
return train_iter, dev_iter, test_iter
# load five-classification data
def mrs_five(path, train_name, dev_name, test_name, char_data, text_field, label_field, **kargs):
"""
:function: load five-classification data
:param path:
:param train_name: train path
:param dev_name: dev path
:param test_name: test path
:param char_data: char data
:param text_field: text dict for finetune
:param label_field: label dict for finetune
:param kargs: others arguments
:return: batch train, batch dev, batch test
"""
train_data, dev_data, test_data = mydatasets_self_five.MR.splits(path, train_name, dev_name, test_name, char_data, text_field, label_field)
print("len(train_data) {} ".format(len(train_data)))
text_field.build_vocab(train_data, min_freq=config.min_freq)
label_field.build_vocab(train_data)
train_iter, dev_iter, test_iter = data.Iterator.splits((train_data, dev_data, test_data), batch_sizes=(config.batch_size, len(dev_data), len(test_data)), **kargs)
return train_iter, dev_iter, test_iter
def mrs_five_mui(path, train_name, dev_name, test_name, char_data, text_field, label_field, static_text_field, static_label_field, **kargs):
"""
:function: load five-classification data
:param path:
:param train_name: train path
:param dev_name: dev path
:param test_name: test path
:param char_data: char data
:param text_field: text dict for finetune
:param label_field: label dict for finetune
:param static_text_field: text dict for static(no finetune)
:param static_label_field: label dict for static(no finetune)
:param kargs: others arguments
:return: batch train, batch dev, batch test
"""
train_data, dev_data, test_data = mydatasets_self_five.MR.splits(path, train_name, dev_name, test_name, char_data, text_field, label_field)
static_train_data, static_dev_data, static_test_data = mydatasets_self_five.MR.splits(path, train_name, dev_name, test_name, char_data, static_text_field, static_label_field)
print("len(train_data) {} ".format(len(train_data)))
print("len(static_train_data) {} ".format(len(static_train_data)))
text_field.build_vocab(train_data, min_freq=config.min_freq)
label_field.build_vocab(train_data)
static_text_field.build_vocab(static_train_data, static_dev_data, static_test_data, min_freq=config.min_freq)
static_label_field.build_vocab(static_train_data, static_dev_data, static_test_data)
train_iter, dev_iter, test_iter = data.Iterator.splits((train_data, dev_data, test_data), batch_sizes=(config.batch_size, len(dev_data), len(test_data)), **kargs)
return train_iter, dev_iter, test_iter
def load_preEmbedding():
# load word2vec
static_pretrain_embed = None
pretrain_embed = None
if config.word_Embedding:
print("word_Embedding_Path {} ".format(config.word_Embedding_Path))
path = config.word_Embedding_Path
print("loading pretrain embedding......")
paddingkey = pad
pretrain_embed = load_pretrained_emb_avg(path=path, text_field_words_dict=config.text_field.vocab.itos,
pad=paddingkey)
if config.CNN_MUI is True or config.DEEP_CNN_MUI is True:
static_pretrain_embed = load_pretrained_emb_avg(path=path, text_field_words_dict=config.static_text_field.vocab.itos,
pad=paddingkey)
config.pretrained_weight = pretrain_embed
if config.CNN_MUI is True or config.DEEP_CNN_MUI is True:
config.pretrained_weight_static = static_pretrain_embed
print("pretrain embedding load finished!")
def Load_Data():
"""
load five classification task data and two classification task data
:return:
"""
train_iter, dev_iter, test_iter = None, None, None
if config.FIVE_CLASS_TASK:
print("Executing 5 Classification Task......")
if config.CNN_MUI is True or config.DEEP_CNN_MUI is True:
train_iter, dev_iter, test_iter = mrs_five_mui(config.datafile_path, config.name_trainfile, config.name_devfile, config.name_testfile, config.char_data, text_field=config.text_field, label_field=config.label_field,
static_text_field=config.static_text_field, static_label_field=config.static_label_field, device=-1, repeat=False, shuffle=config.epochs_shuffle, sort=False)
else:
train_iter, dev_iter, test_iter = mrs_five(config.datafile_path, config.name_trainfile, config.name_devfile, config.name_testfile, config.char_data,
config.text_field, config.label_field, device=-1, repeat=False, shuffle=config.epochs_shuffle, sort=False)
elif config.TWO_CLASS_TASK:
print("Executing 2 Classification Task......")
if config.CNN_MUI is True or config.DEEP_CNN_MUI is True:
train_iter, dev_iter, test_iter = mrs_two_mui(config.datafile_path, config.name_trainfile, config.name_devfile, config.name_testfile, config.char_data, text_field=config.text_field, label_field=config.label_field,
static_text_field=config.static_text_field, static_label_field=config.static_label_field, device=-1, repeat=False, shuffle=config.epochs_shuffle, sort=False)
else:
train_iter, dev_iter, test_iter = mrs_two(config.datafile_path, config.name_trainfile, config.name_devfile, config.name_testfile, config.char_data, config.text_field,
config.label_field, device=-1, repeat=False, shuffle=config.epochs_shuffle, sort=False)
return train_iter, dev_iter, test_iter
def define_dict():
"""
use torchtext to define word and label dict
"""
print("use torchtext to define word dict......")
config.text_field = data.Field(lower=True)
config.label_field = data.Field(sequential=False)
config.static_text_field = data.Field(lower=True)
config.static_label_field = data.Field(sequential=False)
print("use torchtext to define word dict finished.")
# return text_field
def save_arguments():
shutil.copytree("./Config", "./snapshot/" + config.mulu + "/Config")
def update_arguments():
config.lr = config.learning_rate
config.init_weight_decay = config.weight_decay
config.init_clip_max_norm = config.clip_max_norm
config.embed_num = len(config.text_field.vocab)
config.class_num = len(config.label_field.vocab) - 1
config.paddingId = config.text_field.vocab.stoi[pad]
config.unkId = config.text_field.vocab.stoi[unk]
if config.CNN_MUI is True or config.DEEP_CNN_MUI is True:
config.embed_num_mui = len(config.static_text_field.vocab)
config.paddingId_mui = config.static_text_field.vocab.stoi[pad]
config.unkId_mui = config.static_text_field.vocab.stoi[unk]
# config.kernel_sizes = [int(k) for k in config.kernel_sizes.split(',')]
print(config.kernel_sizes)
mulu = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
config.mulu = mulu
config.save_dir = os.path.join(""+config.save_dir, config.mulu)
if not os.path.isdir(config.save_dir):
os.makedirs(config.save_dir)
def load_model():
model = None
if config.snapshot is None:
if config.CNN:
print("loading CNN model.....")
model = CNN_Text(config)
# save model in this time
shutil.copy("./models/model_CNN.py", "./snapshot/" + config.mulu)
elif config.DEEP_CNN:
print("loading DEEP_CNN model......")
model = DEEP_CNN(config)
shutil.copy("./models/model_DeepCNN.py", "./snapshot/" + config.mulu)
elif config.DEEP_CNN_MUI:
print("loading DEEP_CNN_MUI model......")
model = DEEP_CNN_MUI(config)
shutil.copy("./models/model_DeepCNN_MUI.py", "./snapshot/" + config.mulu)
elif config.LSTM:
print("loading LSTM model......")
model = LSTM(config)
shutil.copy("./models/model_LSTM.py", "./snapshot/" + config.mulu)
elif config.GRU:
print("loading GRU model......")
model = GRU(config)
shutil.copy("./models/model_GRU.py", "./snapshot/" + config.mulu)
elif config.BiLSTM:
print("loading BiLSTM model......")
model = BiLSTM(config)
shutil.copy("./models/model_BiLSTM.py", "./snapshot/" + config.mulu)
elif config.BiLSTM_1:
print("loading BiLSTM_1 model......")
# model = model_BiLSTM_lexicon.BiLSTM_1(config)
model = BiLSTM_1(config)
shutil.copy("./models/model_BiLSTM_1.py", "./snapshot/" + config.mulu)
elif config.CNN_LSTM:
print("loading CNN_LSTM model......")
model = CNN_LSTM(config)
shutil.copy("./models/model_CNN_LSTM.py", "./snapshot/" + config.mulu)
elif config.CLSTM:
print("loading CLSTM model......")
model = CLSTM(config)
shutil.copy("./models/model_CLSTM.py", "./snapshot/" + config.mulu)
elif config.CBiLSTM:
print("loading CBiLSTM model......")
model = CBiLSTM(config)
shutil.copy("./models/model_CBiLSTM.py", "./snapshot/" + config.mulu)
elif config.CGRU:
print("loading CGRU model......")
model = CGRU(config)
shutil.copy("./models/model_CGRU.py", "./snapshot/" + config.mulu)
elif config.CNN_BiLSTM:
print("loading CNN_BiLSTM model......")
model = CNN_BiLSTM(config)
shutil.copy("./models/model_CNN_BiLSTM.py", "./snapshot/" + config.mulu)
elif config.BiGRU:
print("loading BiGRU model......")
model = BiGRU(config)
shutil.copy("./models/model_BiGRU.py", "./snapshot/" + config.mulu)
elif config.CNN_BiGRU:
print("loading CNN_BiGRU model......")
model = CNN_BiGRU(config)
shutil.copy("./models/model_CNN_BiGRU.py", "./snapshot/" + config.mulu)
elif config.CNN_MUI:
print("loading CNN_MUI model......")
model = CNN_MUI(config)
shutil.copy("./models/model_CNN_MUI.py", "./snapshot/" + config.mulu)
elif config.HighWay_CNN is True:
print("loading HighWay_CNN model......")
model = HighWay_CNN(config)
shutil.copy("./models/model_HighWay_CNN.py", "./snapshot/" + config.mulu)
elif config.HighWay_BiLSTM_1 is True:
print("loading HighWay_BiLSTM_1 model......")
model = HighWay_BiLSTM_1(config)
shutil.copy("./models/model_HighWay_BiLSTM_1.py", "./snapshot/" + config.mulu)
print(model)
else:
print('\nLoading model from [%s]...' % config.snapshot)
try:
model = torch.load(config.snapshot)
except:
print("Sorry, This snapshot doesn't exist.")
exit()
if config.cuda is True:
model = model.cuda()
return model
def start_train(model, train_iter, dev_iter, test_iter):
"""
:function:start train
:param model:
:param train_iter:
:param dev_iter:
:param test_iter:
:return:
"""
if config.predict is not None:
label = train_ALL_CNN.predict(config.predict, model, config.text_field, config.label_field)
print('\n[Text] {}[Label] {}\n'.format(config.predict, label))
elif config.test:
try:
print(test_iter)
train_ALL_CNN.test_eval(test_iter, model, config)
except Exception as e:
print("\nSorry. The test dataset doesn't exist.\n")
else:
print("\n cpu_count \n", mu.cpu_count())
torch.set_num_threads(config.num_threads)
if os.path.exists("./Test_Result.txt"):
os.remove("./Test_Result.txt")
if config.CNN:
print("CNN training start......")
model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config)
elif config.DEEP_CNN:
print("DEEP_CNN training start......")
model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config)
elif config.LSTM:
print("LSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.GRU:
print("GRU training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.BiLSTM:
print("BiLSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.BiLSTM_1:
print("BiLSTM_1 training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CNN_LSTM:
print("CNN_LSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CLSTM:
print("CLSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CBiLSTM:
print("CBiLSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CGRU:
print("CGRU training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CNN_BiLSTM:
print("CNN_BiLSTM training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.BiGRU:
print("BiGRU training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CNN_BiGRU:
print("CNN_BiGRU training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
elif config.CNN_MUI:
print("CNN_MUI training start......")
model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config)
elif config.DEEP_CNN_MUI:
print("DEEP_CNN_MUI training start......")
model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config)
elif config.HighWay_CNN is True:
print("HighWay_CNN training start......")
model_count = train_ALL_CNN.train(train_iter, dev_iter, test_iter, model, config)
elif config.HighWay_BiLSTM_1 is True:
print("HighWay_BiLSTM_1 training start......")
model_count = train_ALL_LSTM.train(train_iter, dev_iter, test_iter, model, config)
print("Model_count", model_count)
resultlist = []
if os.path.exists("./Test_Result.txt"):
file = open("./Test_Result.txt")
for line in file.readlines():
if line[:10] == "Evaluation":
resultlist.append(float(line[34:41]))
result = sorted(resultlist)
file.close()
file = open("./Test_Result.txt", "a")
file.write("\nThe Best Result is : " + str(result[len(result) - 1]))
file.write("\n")
file.close()
shutil.copy("./Test_Result.txt", "./snapshot/" + config.mulu + "/Test_Result.txt")
def main():
"""
main function
"""
# define word dict
define_dict()
# load data
train_iter, dev_iter, test_iter = Load_Data()
# load pretrain embedding
load_preEmbedding()
# update config and print
update_arguments()
save_arguments()
model = load_model()
start_train(model, train_iter, dev_iter, test_iter)
if __name__ == "__main__":
print("Process ID {}, Process Parent ID {}".format(os.getpid(), os.getppid()))
parser = argparse.ArgumentParser(description="Neural Networks")
parser.add_argument('--config_file', default="./Config/config.cfg")
config = parser.parse_args()
config = configurable.Configurable(config_file=config.config_file)
if config.cuda is True:
print("Using GPU To Train......")
# torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(seed_num)
torch.cuda.manual_seed_all(seed_num)
print("torch.cuda.initial_seed", torch.cuda.initial_seed())
main()