forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzeroPadding2d.cu
227 lines (193 loc) · 6.85 KB
/
zeroPadding2d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/checkMacrosPlugin.h"
#include "zeroPadding2d.h"
#include <array>
#include <cstring>
using namespace nvinfer1;
namespace nvinfer1
{
namespace plugin
{
namespace bert
{
constexpr int32_t kMAX_THREADS_PER_BLOCK{256};
template <typename TDataType>
__global__ void __launch_bounds__(kMAX_THREADS_PER_BLOCK)
zeroPadding2dKernel(const TDataType* src, int32_t spitch, TDataType* dst, int32_t dpitch, int32_t height)
{
int32_t uid = blockIdx.x * blockDim.x + threadIdx.x;
int32_t numElements = dpitch * height;
int32_t numThreads = gridDim.x * blockDim.x;
#pragma unroll
for (; uid < numElements; uid += numThreads)
{
int32_t ty = uid / dpitch;
if (ty >= height)
{
return;
}
int32_t tx = uid % dpitch;
TDataType val = 0;
if (tx < spitch)
{
val = src[ty * spitch + tx];
}
dst[ty * dpitch + tx] = val;
}
}
template <>
__global__ void __launch_bounds__(kMAX_THREADS_PER_BLOCK)
zeroPadding2dKernel(const int4* src, int32_t spitch, int4* dst, int32_t dpitch, int32_t height)
{
int32_t uid = blockIdx.x * blockDim.x + threadIdx.x;
int32_t numElements = dpitch * height;
int32_t numThreads = gridDim.x * blockDim.x;
#pragma unroll
for (; uid < numElements; uid += numThreads)
{
int32_t ty = uid / dpitch;
if (ty >= height)
{
continue;
}
int32_t tx = uid % dpitch;
int4 val{0, 0, 0, 0};
if (tx < spitch)
{
val = src[ty * spitch + tx];
}
dst[ty * dpitch + tx] = val;
}
}
cudaError_t zeroPadding2d(
const void* src, int32_t spitch, void* dst, int32_t dpitch, int32_t height, cudaStream_t stream)
{
using kernel_ptr_t = void (*)(const void* src, int32_t spitch, void* dst, int32_t dpitch, int32_t height);
kernel_ptr_t kernels[5]{reinterpret_cast<kernel_ptr_t>(zeroPadding2dKernel<int8_t>),
reinterpret_cast<kernel_ptr_t>(zeroPadding2dKernel<int16_t>),
reinterpret_cast<kernel_ptr_t>(zeroPadding2dKernel<int32_t>),
reinterpret_cast<kernel_ptr_t>(zeroPadding2dKernel<int64_t>),
reinterpret_cast<kernel_ptr_t>(zeroPadding2dKernel<int4>)};
auto select = [](size_t width) -> int32_t {
if (!(width & 0xF))
{
return 4;
}
if (!(width & 0x7))
{
return 3;
}
if (!(width & 0x3))
{
return 2;
}
if (!(width & 0x1))
{
return 1;
}
return 0;
};
auto kernelId = 4; // 128 bit access
std::array<size_t, 4> checkAlignment{reinterpret_cast<size_t>(src), static_cast<size_t>(spitch),
reinterpret_cast<size_t>(dst), static_cast<size_t>(dpitch)};
for (auto size : checkAlignment)
{
auto shiftId = select(size);
if (shiftId < kernelId)
{
kernelId = shiftId;
}
}
spitch >>= kernelId;
dpitch >>= kernelId;
int32_t devId;
PLUGIN_CHECK_CUDA(cudaGetDevice(&devId));
int32_t numSms;
PLUGIN_CHECK_CUDA(cudaDeviceGetAttribute(&numSms, cudaDevAttrMultiProcessorCount, devId));
auto kernel = kernels[kernelId];
int32_t block = kMAX_THREADS_PER_BLOCK;
int32_t grid = (dpitch * height + kMAX_THREADS_PER_BLOCK - 1) / kMAX_THREADS_PER_BLOCK;
int32_t blocksPerSm;
PLUGIN_CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&blocksPerSm, kernel, block, 0));
grid = std::min(numSms * blocksPerSm, grid);
kernel<<<grid, block, 0, stream>>>(src, spitch, dst, dpitch, height);
return cudaPeekAtLastError();
}
QkvPaddingRunner::QkvPaddingRunner(int32_t headSize, DataType dtype)
{
PLUGIN_ASSERT(headSize > 0 && headSize <= 64);
mPaddingHeadSize = (headSize <= 32) ? 32 : 64;
PLUGIN_ASSERT(dtype == DataType::kHALF || dtype == DataType::kINT8);
mDtypeSize = (dtype == DataType::kHALF) ? 2 : 1;
}
int32_t QkvPaddingRunner::getPaddingHeadSize()
{
return mPaddingHeadSize;
}
size_t QkvPaddingRunner::getInputSize(int32_t sumSeqLen, int32_t numHeads)
{
return (3U * sumSeqLen * numHeads * mPaddingHeadSize * mDtypeSize);
}
size_t QkvPaddingRunner::getOutputSize(int32_t sumSeqLen, int32_t numHeads)
{
return (1U * sumSeqLen * numHeads * mPaddingHeadSize * mDtypeSize);
}
size_t QkvPaddingRunner::getWorkspaceSize(int32_t sumSeqLen, int32_t numHeads)
{
constexpr int32_t reserveForAlignment = 16;
return getInputSize(sumSeqLen, numHeads) + getOutputSize(sumSeqLen, numHeads) + reserveForAlignment;
}
void* QkvPaddingRunner::get16BytesAlignedPointer(void* workspace, size_t offset)
{
auto addr = reinterpret_cast<uintptr_t>(workspace) + offset;
auto shift = 16 - (addr & 0xF);
if (shift == 16)
{
shift = 0;
}
return reinterpret_cast<void*>(addr + shift);
}
cudaError_t QkvPaddingRunner::pad(
const void* src, void* workspace, int32_t sumSeqLen, int32_t numHeads, int32_t headSize, cudaStream_t stream)
{
return zeroPadding2d(
src, headSize * mDtypeSize, workspace, mPaddingHeadSize * mDtypeSize, 3 * sumSeqLen * numHeads, stream);
}
cudaError_t QkvPaddingRunner::unpad(
const void* workspace, void* dst, int32_t sumSeqLen, int32_t numHeads, int32_t headSize, cudaStream_t stream)
{
return zeroPadding2d(
workspace, mPaddingHeadSize * mDtypeSize, dst, headSize * mDtypeSize, sumSeqLen * numHeads, stream);
}
MhaRunParameter QkvPaddingRunner::patchMhaArgs(const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* paddingWorkspace, int32_t sumSeqLen, int32_t numHeads)
{
MhaRunParameter args;
std::memcpy(args.inputDesc, inputDesc, 4 * sizeof(PluginTensorDesc));
auto paddingHiddenSize = numHeads * mPaddingHeadSize;
args.inputDesc[0].dims.d[1] = 3 * paddingHiddenSize;
args.outputDesc[0] = outputDesc[0];
args.outputDesc[0].dims.d[1] = paddingHiddenSize;
std::memcpy(args.inputs, inputs, 4 * sizeof(void*));
args.inputs[0] = paddingWorkspace;
args.outputs[0] = get16BytesAlignedPointer(paddingWorkspace, getInputSize(sumSeqLen, numHeads));
return args;
}
} // namespace bert
} // namespace plugin
} // namespace nvinfer1