forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqkvToContext.cu
1267 lines (1080 loc) · 38.5 KB
/
qkvToContext.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "NvInfer.h"
#include "common/bertCommon.h"
#include "common/common.cuh"
#include "common/serialize.hpp"
#include "qkvToContextPlugin.h"
#include <cassert>
#include <cstring>
#include <iostream>
#include <tuple>
#include <vector>
#include "bertQKVToContextPlugin/fused_multihead_attention_v2/include/fused_multihead_attention_v2.h"
using namespace nvinfer1;
namespace nvinfer1
{
namespace plugin
{
namespace bert
{
inline uint32_t asUInt32(float const& val)
{
return *reinterpret_cast<uint32_t const*>(reinterpret_cast<void const*>(&val));
}
template <typename T, int TPB, int VPT>
__global__ void maskedSoftmax(const float rsqrtHeadSize, const T* input, T* output, const int* maskIdx)
{
using BlockReduce = cub::BlockReduce<float, TPB>;
union SMem
{
T shm[VPT * TPB];
typename BlockReduce::TempStorage reduce;
SMem() {}
};
__shared__ SMem tmp;
// grid: (NxS, B)
const int b = blockIdx.y;
const int blockOffset = (b * gridDim.x + blockIdx.x) * TPB;
__shared__ int lastValid;
if (threadIdx.x == 0)
{
lastValid = min(TPB, maskIdx[b]);
}
__syncthreads();
float local[VPT];
__shared__ float rZ;
__shared__ float fMax[VPT];
const int idx = (blockOffset + threadIdx.x) * VPT;
T* myshm = &tmp.shm[threadIdx.x * VPT];
copy<sizeof(T) * VPT>(&input[idx], myshm);
__syncthreads();
#pragma unroll
for (int it = 0; it < VPT; it++)
{
local[it] = (threadIdx.x < lastValid) ? float(tmp.shm[it * TPB + threadIdx.x]) : -FLT_MAX;
}
__syncthreads();
#pragma unroll
for (int it = 0; it < VPT; it++)
{
float maxElem = BlockReduce(tmp.reduce).Reduce(local[it], cub::Max());
if (threadIdx.x == 0)
{
fMax[it] = maxElem;
}
__syncthreads();
}
#pragma unroll
for (int it = 0; it < VPT; it++)
{
local[it] = (threadIdx.x < lastValid) ? myExp<float>(rsqrtHeadSize * (local[it] - fMax[it])) : 0.f;
}
__syncthreads();
#pragma unroll
for (int it = 0; it < VPT; it++)
{
const auto Z = BlockReduce(tmp.reduce).Reduce(local[it], cub::Sum());
if (threadIdx.x == 0)
{
rZ = (1.f) / Z;
}
__syncthreads();
local[it] = (threadIdx.x < lastValid) ? local[it] * rZ : 0.F;
}
#pragma unroll
for (int it = 0; it < VPT; it++)
{
tmp.shm[it * TPB + threadIdx.x] = local[it];
}
__syncthreads();
copy<sizeof(T) * VPT>(myshm, &output[idx]);
}
template <typename T, int TPB, int VPT>
__global__ void softmax(const float rsqrtHeadSize, const T* input, T* output)
{
float local[VPT];
using BlockReduce = cub::BlockReduce<float, TPB>;
union SMem
{
T shm[VPT * TPB];
typename BlockReduce::TempStorage reduce;
SMem() {}
};
__shared__ SMem tmp;
__shared__ float rZ;
__shared__ float fMax[VPT];
const int idx = (TPB * blockIdx.x + threadIdx.x) * VPT;
T* myshm = &tmp.shm[threadIdx.x * VPT];
copy<sizeof(T) * VPT>(&input[idx], myshm);
__syncthreads();
#pragma unroll
for (int it = 0; it < VPT; it++)
{
local[it] = float(tmp.shm[it * TPB + threadIdx.x]);
}
__syncthreads();
#pragma unroll
for (int it = 0; it < VPT; it++)
{
float maxElem = BlockReduce(tmp.reduce).Reduce(local[it], cub::Max());
if (threadIdx.x == 0)
{
fMax[it] = maxElem;
}
__syncthreads();
}
#pragma unroll
for (int it = 0; it < VPT; it++)
{
local[it] = myExp<float>(rsqrtHeadSize * (local[it] - fMax[it]));
}
__syncthreads();
#pragma unroll
for (int it = 0; it < VPT; it++)
{
const auto Z = BlockReduce(tmp.reduce).Reduce(local[it], cub::Sum());
if (threadIdx.x == 0)
{
rZ = 1.f / Z;
}
__syncthreads();
local[it] *= rZ;
}
#pragma unroll
for (int it = 0; it < VPT; it++)
{
tmp.shm[it * TPB + threadIdx.x] = local[it];
}
__syncthreads();
copy<sizeof(T) * VPT>(myshm, &output[idx]);
}
template <typename T, unsigned TPB>
__global__ void scaledSoftmaxKernelSmall(const int ld, const float rsqrtHeadSize, const T* input, T* output)
{
scaledSoftmaxSmall<T, TPB>(ld, ld, rsqrtHeadSize, input, output);
}
template <typename T, unsigned TPB>
__global__ void scaledSoftmaxKernel(const int ld, const float rsqrtHeadSize, const T* input, T* output)
{
scaledSoftmax<T, TPB>(ld, ld, rsqrtHeadSize, input, output);
}
template <typename T>
int computeScaledSoftmax(
cudaStream_t stream, const int ld, const int B, const int N, const float rsqrtHeadSize, const T* input, T* output)
{
constexpr int VPT = 16 / sizeof(T);
const dim3 grid(ld * N, B, 1);
if (ld <= 32)
{
const int blockSize = 32;
scaledSoftmaxKernelSmall<T, blockSize><<<grid, blockSize, 0, stream>>>(ld, rsqrtHeadSize, input, output);
}
else if (ld < 128)
{
const int blockSize = 128;
scaledSoftmaxKernelSmall<T, blockSize><<<grid, blockSize, 0, stream>>>(ld, rsqrtHeadSize, input, output);
}
else if (ld == 128)
{
const int grid = B * N * ld / (VPT);
softmax<T, 128, VPT><<<grid, 128, 0, stream>>>(rsqrtHeadSize, input, output);
}
else if (ld == 384)
{
const int grid = B * N * ld / (VPT);
softmax<T, 384, VPT><<<grid, 384, 0, stream>>>(rsqrtHeadSize, input, output);
}
else
{
const int blockSize = 256;
scaledSoftmaxKernel<T, blockSize><<<grid, blockSize, 0, stream>>>(ld, rsqrtHeadSize, input, output);
}
PLUGIN_CHECK(cudaPeekAtLastError());
return 0;
}
template <typename T, unsigned TPB>
__global__ void maskedScaledSoftmaxKernelSmall(
const int ld, const float rsqrtHeadSize, const int* maskIdx, const T* input, T* output)
{
__shared__ int lastValid;
if (threadIdx.x == 0)
{
lastValid = min(ld, maskIdx[blockIdx.y]);
}
__syncthreads();
scaledSoftmaxSmall<T, TPB>(ld, lastValid, rsqrtHeadSize, input, output);
}
template <typename T, unsigned TPB>
__global__ void maskedScaledSoftmaxKernel(
const int ld, const float rsqrtHeadSize, const int* maskIdx, const T* input, T* output)
{
__shared__ int lastValid;
if (threadIdx.x == 0)
{
lastValid = min(ld, maskIdx[blockIdx.y]);
}
__syncthreads();
scaledSoftmax<T, TPB>(ld, lastValid, rsqrtHeadSize, input, output);
}
template <typename T>
int computeMaskedScaledSoftmax(cudaStream_t stream, const int ld, const int B, const int N, const float rsqrtHeadSize,
const int* maskIdx, const T* input, T* output)
{
// Mask idx is of length B and assumes the valid region is contiguous starting
// from the beginning of the sequence
const dim3 grid(ld * N, B, 1);
// for smaller problems, e.g. BERT base B=1, this is not optimal
if (ld <= 32)
{
constexpr int blockSize = 32;
maskedScaledSoftmaxKernelSmall<T, blockSize>
<<<grid, blockSize, 0, stream>>>(ld, rsqrtHeadSize, maskIdx, input, output);
}
else if (ld < 128)
{
constexpr int blockSize = 128;
maskedScaledSoftmaxKernelSmall<T, blockSize>
<<<grid, blockSize, 0, stream>>>(ld, rsqrtHeadSize, maskIdx, input, output);
}
else if (ld == 128)
{
if (B == 1)
{
constexpr int VPT = 4 / sizeof(T);
constexpr int blockSize = 128;
const dim3 grid(ld * N / VPT, B, 1);
maskedSoftmax<T, blockSize, VPT><<<grid, blockSize, 0, stream>>>(rsqrtHeadSize, input, output, maskIdx);
}
else
{
constexpr int VPT = 16 / sizeof(T);
constexpr int blockSize = 128;
const dim3 grid(ld * N / VPT, B, 1);
maskedSoftmax<T, blockSize, VPT><<<grid, blockSize, 0, stream>>>(rsqrtHeadSize, input, output, maskIdx);
}
}
else if (ld == 384)
{
if (B == 1)
{
constexpr int VPT = 4 / sizeof(T);
constexpr int blockSize = 384;
const dim3 grid(ld * N / VPT, B, 1);
maskedSoftmax<T, blockSize, VPT><<<grid, blockSize, 0, stream>>>(rsqrtHeadSize, input, output, maskIdx);
}
else
{
constexpr int VPT = 16 / sizeof(T);
constexpr int blockSize = 384;
const dim3 grid(ld * N / VPT, B, 1);
maskedSoftmax<T, blockSize, VPT><<<grid, blockSize, 0, stream>>>(rsqrtHeadSize, input, output, maskIdx);
}
}
else
{
constexpr int blockSize = 256;
maskedScaledSoftmaxKernel<T, blockSize>
<<<grid, blockSize, 0, stream>>>(ld, rsqrtHeadSize, maskIdx, input, output);
}
PLUGIN_CHECK(cudaPeekAtLastError());
return 0;
}
std::pair<int, int> tuneBatchedGemm(
const int B, const int S, const int numHeads, const int headSize, const int smVersion)
{
const int nruns = 500;
cublasHandle_t cublas;
PLUGIN_CUBLASASSERT(cublasCreate(&cublas));
cudaStream_t stream;
PLUGIN_CUASSERT(cudaStreamCreate(&stream));
cudaEvent_t start, stop;
PLUGIN_CUASSERT(cudaEventCreate(&start));
PLUGIN_CUASSERT(cudaEventCreate(&stop));
PLUGIN_CUBLASASSERT(cublasSetStream(cublas, stream));
PLUGIN_CUBLASASSERT(cublasSetMathMode(cublas, CUBLAS_TENSOR_OP_MATH));
using T = half;
const int omatSize = S * S;
const int numMats = B * numHeads;
const int ldQKV = 3 * B * numHeads * headSize;
const int strideQKV = 3 * headSize;
const int ldOut = B * numHeads * headSize;
const int strideOut = headSize;
const size_t inBytes = S * B * 3 * numHeads * headSize * sizeof(T);
const size_t qkBytes = S * S * B * numHeads * sizeof(T);
const size_t outBytes = S * B * numHeads * headSize * sizeof(T);
T* input = nullptr;
T* qkptr = nullptr;
T* output = nullptr;
PLUGIN_CUASSERT(cudaMalloc(&input, inBytes));
PLUGIN_CUASSERT(cudaMalloc(&qkptr, qkBytes));
PLUGIN_CUASSERT(cudaMalloc(&output, outBytes));
PLUGIN_CUASSERT(cudaMemset(input, 1, inBytes));
PLUGIN_CUASSERT(cudaMemset(qkptr, 1, qkBytes));
// input: SxBx3xNxH
const T* qptr = input;
const T* kptr = qptr + headSize;
const T* vptr = kptr + headSize;
const int startAlgo = (int) CUBLAS_GEMM_DEFAULT_TENSOR_OP;
const int endAlgo = (int) CUBLAS_GEMM_ALGO15_TENSOR_OP;
int best1 = startAlgo;
int best2 = startAlgo;
float ms1 = 1000000;
float ms2 = 1000000;
PLUGIN_ASSERT(smVersion >= kSM_53);
for (int a = startAlgo; a <= endAlgo; a++)
{
cublasGemmAlgo_t algo = static_cast<cublasGemmAlgo_t>(a);
float ms1_, ms2_;
// qkptr: BxNxSxS
PLUGIN_CUASSERT(cudaEventRecord(start, stream));
for (int r = 0; r < nruns; r++)
{
PLUGIN_CUBLASASSERT(cublasGemmStridedBatchedEx<T>(cublas, CUBLAS_OP_T, CUBLAS_OP_N, S, S, headSize, T(1.f),
kptr, ldQKV, strideQKV, qptr, ldQKV, strideQKV, T(0.f), qkptr, S, omatSize, numMats, algo));
}
PLUGIN_CUASSERT(cudaEventRecord(stop, stream));
PLUGIN_CUASSERT(cudaStreamSynchronize(stream));
PLUGIN_CUASSERT(cudaEventElapsedTime(&ms1_, start, stop));
if (ms1_ < ms1)
{
best1 = algo;
ms1 = ms1_;
}
// pptr: BxNxSxS
// output: SxBxNxH
PLUGIN_CUASSERT(cudaEventRecord(start, stream));
for (int r = 0; r < nruns; r++)
{
PLUGIN_CUBLASASSERT(cublasGemmStridedBatchedEx<T>(cublas, CUBLAS_OP_N, CUBLAS_OP_N, headSize, S, S, 1.f,
vptr, ldQKV, strideQKV, qkptr, S, omatSize, 0.f, output, ldOut, strideOut, numMats, algo));
}
PLUGIN_CUASSERT(cudaEventRecord(stop, stream));
PLUGIN_CUASSERT(cudaStreamSynchronize(stream));
PLUGIN_CUASSERT(cudaEventElapsedTime(&ms2_, start, stop));
if (ms2_ < ms2)
{
best2 = algo;
ms2 = ms2_;
}
}
PLUGIN_CUASSERT(cudaFree(input));
PLUGIN_CUASSERT(cudaFree(qkptr));
PLUGIN_CUASSERT(cudaFree(output));
PLUGIN_CUASSERT(cudaEventDestroy(start));
PLUGIN_CUASSERT(cudaEventDestroy(stop));
PLUGIN_CUASSERT(cudaStreamDestroy(stream));
PLUGIN_CUBLASASSERT(cublasDestroy(cublas));
return std::make_pair(best1, best2);
}
template int computeScaledSoftmax<float>(cudaStream_t stream, const int ld, const int B, const int N,
const float rsqrtHeadSize, const float* input, float* output);
template int computeScaledSoftmax<half>(cudaStream_t stream, const int ld, const int B, const int N,
const float rsqrtHeadSize, const half* input, half* output);
template int computeMaskedScaledSoftmax<float>(cudaStream_t stream, const int ld, const int B, const int N,
const float rsqrtHeadSize, const int* maskIdx, const float* input, float* output);
template int computeMaskedScaledSoftmax<half>(cudaStream_t stream, const int ld, const int B, const int N,
const float rsqrtHeadSize, const int* maskIdx, const half* input, half* output);
size_t MHARunner::getSerializationSize() const noexcept
{
return sizeof(mS) + sizeof(mB);
}
void MHARunner::serialize(void* buffer) const noexcept
{
serialize_value(&buffer, mS);
serialize_value(&buffer, mB);
}
void MHARunner::deserialize(const void* data, size_t length)
{
deserialize_value(&data, &length, &mS);
deserialize_value(&data, &length, &mB);
setup(mS, mB);
}
UnfusedMHARunner::UnfusedMHARunner(const nvinfer1::DataType type, const int numHeads, const int headSize, const int sm)
: MHARunner(type, numHeads, headSize)
, mIsBestAlgoFound(false)
, mAlgoBatchedEx1(CUBLAS_GEMM_DEFAULT_TENSOR_OP)
, mAlgoBatchedEx2(CUBLAS_GEMM_DEFAULT_TENSOR_OP)
, mSm(sm)
{
PLUGIN_CUBLASASSERT(cublasCreate(&mCublas));
}
UnfusedMHARunner::~UnfusedMHARunner()
{
PLUGIN_CUBLASASSERT(cublasDestroy(mCublas));
}
size_t UnfusedMHARunner::getSerializationSize() const noexcept
{
return sizeof(mAlgoBatchedEx1) + sizeof(mAlgoBatchedEx2) + MHARunner::getSerializationSize();
}
void UnfusedMHARunner::serialize(void* buffer) const noexcept
{
serialize_value(&buffer, mAlgoBatchedEx1);
serialize_value(&buffer, mAlgoBatchedEx2);
MHARunner::serialize(buffer);
}
void UnfusedMHARunner::deserialize(const void* data, size_t length)
{
mIsBestAlgoFound = true;
deserialize_value(&data, &length, &mAlgoBatchedEx1);
deserialize_value(&data, &length, &mAlgoBatchedEx2);
MHARunner::deserialize(data, length);
}
void UnfusedMHARunner::setup(const int S, const int B)
{
MHARunner::setup(S, B);
if (mType == DataType::kHALF && !mIsBestAlgoFound)
{
std::tie(mAlgoBatchedEx1, mAlgoBatchedEx2) = tuneBatchedGemm(B, S, mNumHeads, mHeadSize, mSm);
mIsBestAlgoFound = true;
BERT_DEBUG_VALUE("QKV Plugin - Selected Algo 1 for batch gemms: ", mAlgoBatchedEx1);
BERT_DEBUG_VALUE("QKV Plugin - Selected Algo 2 for batch gemms: ", mAlgoBatchedEx2);
}
}
size_t UnfusedMHARunner::getWorkspaceSize() const
{
return 2UL * mWordSize * mOmatSize * mNumMats;
}
void UnfusedMHARunner::run(const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
{
this->run(inputDesc[0], outputDesc[0], inputs[0], inputs[1], outputs[0], workspace, stream);
}
void UnfusedMHARunner::run(const PluginTensorDesc& inputDesc, const PluginTensorDesc& outputDesc, const void* qkvPtr,
const void* maskPtr, void* output, void* workspace, cudaStream_t stream)
{
const int* maskIdx = static_cast<const int*>(maskPtr);
PLUGIN_CUBLASASSERT(cublasSetStream(mCublas, stream));
// Q, K, V: BxNxSxH (inputs)
// Q * K': BxNxSxS (-> scratch1)
// P: BxNxSxS (-> scratch2)
// P * V: BxNxSxH (output)
if (mType == DataType::kHALF)
{
CublasConfigHelper helper(mCublas);
const half* qptr = static_cast<const half*>(qkvPtr);
const half* kptr = qptr + mHeadSize;
const half* vptr = kptr + mHeadSize;
half* qkptr = static_cast<half*>(workspace);
half* pptr = qkptr + mOmatSize * mNumMats;
half alpha = 1.f;
half beta = 0.f;
PLUGIN_CUBLASASSERT(::cublasGemmStridedBatchedEx(mCublas, CUBLAS_OP_T, CUBLAS_OP_N, mS, mS, mHeadSize, &alpha,
kptr, CUDA_R_16F, mLdQKV, mStrideQKV, qptr, CUDA_R_16F, mLdQKV, mStrideQKV, &beta, qkptr, CUDA_R_16F, mS,
mOmatSize, mNumMats, CUDA_R_16F, static_cast<cublasGemmAlgo_t>(mAlgoBatchedEx1)));
// apply softmax
if (maskIdx)
{ // if we have a mask
computeMaskedScaledSoftmax<half>(stream, mS, mB, mNumHeads, mRsqrtHeadSize, maskIdx, qkptr, pptr);
}
else
{ // if we don't have a mask
computeScaledSoftmax<half>(stream, mS, mB, mNumHeads, mRsqrtHeadSize, qkptr, pptr);
}
// compute P*V (as V*P)
PLUGIN_CUBLASASSERT(cublasGemmStridedBatchedEx(mCublas, CUBLAS_OP_N, CUBLAS_OP_N, mHeadSize, mS, mS, &alpha,
vptr, CUDA_R_16F, mLdQKV, mStrideQKV, pptr, CUDA_R_16F, mS, mOmatSize, &beta, output, CUDA_R_16F, mLdOut,
mStrideOut, mNumMats, CUDA_R_16F, static_cast<cublasGemmAlgo_t>(mAlgoBatchedEx2)));
}
else
{
const float* qptr = static_cast<const float*>(qkvPtr);
const float* kptr = qptr + mHeadSize;
const float* vptr = kptr + mHeadSize;
float* qkptr = static_cast<float*>(workspace);
float* pptr = qkptr + mOmatSize * mNumMats;
float* outptr = static_cast<float*>(output);
PLUGIN_CUBLASASSERT(cublasGemmStridedBatched<float>(mCublas, CUBLAS_OP_T, CUBLAS_OP_N, mS, mS, mHeadSize, 1.f,
kptr, mLdQKV, mStrideQKV, qptr, mLdQKV, mStrideQKV, 0.f, qkptr, mS, mOmatSize, mNumMats));
// apply softmax
if (maskIdx)
{ // if we have a mask
computeMaskedScaledSoftmax<float>(stream, mS, mB, mNumHeads, mRsqrtHeadSize, maskIdx, qkptr, pptr);
}
else
{ // if we don't have a mask
computeScaledSoftmax<float>(stream, mS, mB, mNumHeads, mRsqrtHeadSize, qkptr, pptr);
}
PLUGIN_CUBLASASSERT(cublasGemmStridedBatched<float>(mCublas, CUBLAS_OP_N, CUBLAS_OP_N, mHeadSize, mS, mS, 1.f,
vptr, mLdQKV, mStrideQKV, pptr, mS, mOmatSize, 0.f, outptr, mLdOut, mStrideOut, mNumMats));
}
}
bool UnfusedMHARunner::isValid(int s) const
{
return mType != DataType::kINT8;
}
static inline void set_alpha(uint32_t& alpha, float norm, Data_type dtype)
{
if (dtype == DATA_TYPE_FP16)
{
half2 h2 = __float2half2_rn(norm);
alpha = reinterpret_cast<const uint32_t&>(h2);
}
else if (dtype == DATA_TYPE_FP32)
{
alpha = reinterpret_cast<const uint32_t&>(norm);
}
else if (dtype == DATA_TYPE_INT32)
{
int32_t inorm = static_cast<int32_t>(norm);
alpha = reinterpret_cast<const uint32_t&>(inorm);
}
else
{
assert(false);
}
}
class FusedMHARunnerFP16::mhaImpl
{
public:
mhaImpl(FusedMHARunnerFP16* interface)
: interface(interface)
, sm(interface->mSm)
, xmmaKernel(getXMMAKernels(DATA_TYPE_FP16, sm))
, xmmas_m(0U)
, xmmas_n(0U)
, threads_per_cta(1U)
{
}
~mhaImpl() {}
size_t getPackedMaskSizeInBytes() const
{
// check that we initialized
assert(xmmas_m > 0);
assert(threads_per_cta > 0);
assert(interface->mB > 0);
return interface->mB * xmmas_m * threads_per_cta * sizeof(uint32_t);
}
void setup(const int S, const int B)
{
// TODO these implementation details might be better centralized into the XMMA code, since they are needed in
// several places (also outside of this plugin)
size_t warps_m{1U};
size_t warps_n{1U};
size_t warps_k{1U};
if (S == 64 || S == 96 || S == 128)
{
warps_m = 2;
warps_n = 2;
}
else if (S == 384)
{
warps_m = 1;
warps_n = 8;
}
else
{
assert(false && "Unsupporte seqlen");
}
// The number of threads per CTA.
threads_per_cta = warps_m * warps_n * warps_k * 32;
// The number of xmmas in the M dimension. We use one uint32_t per XMMA in the M dimension.
xmmas_m = (S + 16 * warps_m - 1) / (16 * warps_m);
// The number of xmmas in the N dimension.
xmmas_n = (S + 16 * warps_n - 1) / (16 * warps_n);
const float scale_bmm1 = interface->mRsqrtHeadSize;
const float scale_softmax = 1.f; // Seems to be only required for int8
const float scale_bmm2 = 1.f;
Data_type scale_type = DATA_TYPE_FP16;
set_alpha(params.scale_bmm1, scale_bmm1, scale_type);
set_alpha(params.scale_softmax, scale_softmax, scale_type);
set_alpha(params.scale_bmm2, scale_bmm2, scale_type);
params.b = B;
params.h = interface->mNumHeads;
params.s = S;
params.d = interface->mHeadSize;
params.qkv_stride_in_bytes = get_size_in_bytes(interface->mLdQKV, DATA_TYPE_FP16);
params.packed_mask_stride_in_bytes = xmmas_m * threads_per_cta * sizeof(uint32_t);
params.o_stride_in_bytes = get_size_in_bytes(interface->mLdOut, DATA_TYPE_FP16);
}
void run(const PluginTensorDesc& inputDesc, const PluginTensorDesc& outputDesc, const void* qkvPtr,
const void* maskPtr, void* output, void* workspace, cudaStream_t stream)
{
params.qkv_ptr = const_cast<void*>(qkvPtr);
params.packed_mask_ptr = const_cast<void*>(maskPtr);
params.o_ptr = output;
xmmaKernel->run(params, stream);
PLUGIN_CHECK(cudaPeekAtLastError());
}
bool isValid(int s) const
{
return xmmaKernel->isValid(s);
}
private:
FusedMHARunnerFP16* interface;
Fused_multihead_attention_params params;
int sm;
const FusedMultiHeadAttentionXMMAKernel* xmmaKernel;
size_t xmmas_m;
size_t xmmas_n;
size_t threads_per_cta;
};
FusedMHARunnerFP16::FusedMHARunnerFP16(const int numHeads, const int headSize, const int sm)
: MHARunner(DataType::kHALF, numHeads, headSize)
, mSm(sm)
, pimpl(new mhaImpl(this))
{
}
void FusedMHARunnerFP16::setup(const int S, const int B)
{
MHARunner::setup(S, B);
pimpl->setup(S, B);
}
size_t FusedMHARunnerFP16::getWorkspaceSize() const
{
return 0;
}
void FusedMHARunnerFP16::deserialize(const void* data, size_t length)
{
MHARunner::deserialize(data, length);
setup(mS, mB);
}
void FusedMHARunnerFP16::run(const PluginTensorDesc& inputDesc, const PluginTensorDesc& outputDesc, const void* qkvPtr,
const void* maskPtr, void* output, void* workspace, cudaStream_t stream)
{
pimpl->run(inputDesc, outputDesc, qkvPtr, maskPtr, output, workspace, stream);
}
void FusedMHARunnerFP16::run(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
{
assert(false && "not implemented");
}
bool FusedMHARunnerFP16::isValid(int s) const
{
return pimpl->isValid(s);
}
// Int8 starts here: TODO refactor the duplicate stuff
class FusedMHARunnerInt8::mhaImpl
{
public:
mhaImpl(FusedMHARunnerInt8* interface)
: interface(interface)
, sm(interface->mSm)
, xmmaKernel(getXMMAKernels(DATA_TYPE_INT8, sm))
, mDqProbs(interface->mDqProbs)
, xmmas_m(0U)
, xmmas_n(0U)
, threads_per_cta(1U)
{
}
~mhaImpl() {}
size_t getPackedMaskSizeInBytes() const
{
assert(xmmas_m > 0);
assert(threads_per_cta > 0);
assert(interface->mB > 0);
return interface->mB * xmmas_m * threads_per_cta * sizeof(uint32_t);
}
void setup(const int S, const int B)
{
size_t warps_m{1U};
size_t warps_n{1U};
size_t warps_k{1U};
if (S == 128)
{
warps_m = 2;
warps_n = 2;
}
else if (S == 384)
{
warps_m = 1;
warps_n = 8;
}
else
{
assert(false && "Unsupporte seqlen");
}
// The number of threads per CTA.
threads_per_cta = warps_m * warps_n * warps_k * 32;
// The number of xmmas in the M dimension. We use one uint32_t per XMMA in the M dimension.
xmmas_m = (S + 16 * warps_m - 1) / (16 * warps_m);
// The number of xmmas in the N dimension.
xmmas_n = (S + 16 * warps_n - 1) / (16 * warps_n);
params.b = B;
params.h = interface->mNumHeads;
params.s = S;
params.d = interface->mHeadSize;
params.qkv_stride_in_bytes = get_size_in_bytes(interface->mLdQKV, DATA_TYPE_INT8);
params.packed_mask_stride_in_bytes = xmmas_m * threads_per_cta * sizeof(uint32_t);
params.o_stride_in_bytes = get_size_in_bytes(interface->mLdOut, DATA_TYPE_INT8);
}
void run(const PluginTensorDesc& inputDesc, const PluginTensorDesc& outputDesc, const void* qkvPtr,
const void* maskPtr, void* output, void* workspace, cudaStream_t stream)
{
float scaleQkv = inputDesc.scale;
float scaleCtx = outputDesc.scale;
float scaleBmm1 = scaleQkv * scaleQkv * interface->mRsqrtHeadSize;
float scaleBmm2 = mDqProbs * scaleQkv / scaleCtx;
float scaleSoftmax = 1.f / mDqProbs;
params.scale_bmm1 = asUInt32(scaleBmm1);
params.scale_bmm2 = asUInt32(scaleBmm2);
params.scale_softmax = asUInt32(scaleSoftmax);
params.enable_i2f_trick = -double(1 << 22) * double(scaleBmm2) <= -128.f
&& double(1 << 22) * double(scaleBmm2) >= 127.f;
params.qkv_ptr = const_cast<void*>(qkvPtr);
params.packed_mask_ptr = const_cast<void*>(maskPtr);
params.o_ptr = output;
xmmaKernel->run(params, stream);
PLUGIN_CHECK(cudaPeekAtLastError());
}
bool isValid(int s) const
{
return xmmaKernel->isValid(s);
}
private:
float mDqProbs;
FusedMHARunnerInt8* interface;
Fused_multihead_attention_params params;
int sm;
const FusedMultiHeadAttentionXMMAKernel* xmmaKernel;
size_t xmmas_m;
size_t xmmas_n;
size_t threads_per_cta;
};
FusedMHARunnerInt8::FusedMHARunnerInt8(const int numHeads, const int headSize, const int sm, const float dqProbs)
: MHARunner(DataType::kINT8, numHeads, headSize)
, mSm(sm)
, pimpl(new mhaImpl(this))
, mDqProbs(dqProbs)
{
}
void FusedMHARunnerInt8::setup(const int S, const int B)
{
MHARunner::setup(S, B);
pimpl->setup(S, B);
}
size_t FusedMHARunnerInt8::getWorkspaceSize() const
{
return 0;
}
void FusedMHARunnerInt8::deserialize(const void* data, size_t length)
{
MHARunner::deserialize(data, length);
setup(mS, mB);
}
void FusedMHARunnerInt8::run(const PluginTensorDesc& inputDesc, const PluginTensorDesc& outputDesc, const void* qkvPtr,
const void* maskPtr, void* output, void* workspace, cudaStream_t stream)
{
pimpl->run(inputDesc, outputDesc, qkvPtr, maskPtr, output, workspace, stream);
}
void FusedMHARunnerInt8::run(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
{
assert(false && "not implemented");
}
bool FusedMHARunnerInt8::isValid(int s) const
{
return pimpl->isValid(s);
}
class FusedMHARunnerFP16v2::mhaImpl
{
public:
mhaImpl(FusedMHARunnerFP16v2* interface)
: interface(interface)
, sm(interface->mSm)
, xmmaKernel(getXMMAKernelsV2(DATA_TYPE_FP16, sm))
{
assert((sm == kSM_72 || sm == kSM_75 || sm == kSM_80 || sm == kSM_86 || sm == kSM_87 || sm == kSM_89 || sm == kSM_90)
&& "Unsupported architecture");
params.clear();
}
~mhaImpl() {}
size_t getPackedMaskSizeInBytes() const
{
// check that we initialized
assert(xmmas_m > 0);
assert(threads_per_cta > 0);
assert(interface->mB > 0);
return interface->mB * xmmas_m * threads_per_cta * sizeof(uint32_t);
}
void setup(const int S, const int B)
{
// TODO these implementation details might be better centralized into the XMMA code, since they are needed in
// several places (also outside of this plugin)
size_t warps_m{1U};
size_t warps_n{1U};
size_t warps_k{1U};
// [MLPINF-1894] HGMMA has a different warp group.
// TODO: add S==64/96/512 HGMMA support for sm==90
if (sm == kSM_90 && (S == 128 || S == 256 || S == 384))
{
warps_m = 4;
warps_n = 1;
}
else
{
if (S == 64 || S == 96 || S == 128)
{
warps_m = 2;
warps_n = 2;
}
else if (S == 256 || S == 192)
{
warps_m = 1;
warps_n = 4;
}
else if (S == 384 || S == 512)
{
warps_m = 1;
warps_n = 8;
}
else
{
assert(false && "Unsupporte seqlen");
}
}
// The number of threads per CTA.
threads_per_cta = warps_m * warps_n * warps_k * 32;
// The number of xmmas in the M dimension. We use one uint32_t per XMMA in the M dimension.
xmmas_m = (S + 16 * warps_m - 1) / (16 * warps_m);
// The number of xmmas in the N dimension.
xmmas_n = (S + 16 * warps_n - 1) / (16 * warps_n);
const float scale_bmm1 = interface->mRsqrtHeadSize;
const float scale_softmax = 1.f; // Seems to be only required for int8
const float scale_bmm2 = 1.f;
Data_type scale_type = DATA_TYPE_FP16;
set_alpha(params.scale_bmm1, scale_bmm1, scale_type);
set_alpha(params.scale_softmax, scale_softmax, scale_type);
set_alpha(params.scale_bmm2, scale_bmm2, scale_type);
params.b = B;
params.h = interface->mNumHeads;
params.s = S;
params.d = interface->mHeadSize;
// mLdQKV = 3 * B * mNumHeads * mHeadSize;
// mLdOut = B * mNumHeads * mHeadSize;