-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstrong_fuzzy_partition.py
67 lines (52 loc) · 1.89 KB
/
strong_fuzzy_partition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Generate a vectorial representation of a strong fuzzy partition
Algorithm and notation are taken from the paper: "Design of Strong Fuzzy Partition"
Link: https://www.researchgate.net/publication/266644545_Design_of_Strong_Fuzzy_Partitions_from_Cuts
"""
import numpy as np
MIN = 0
MAX = 1
LEFT_BOUND = 0
A = 0
B = 1
C = 2
D = 3
def constant_slope(cuts_list, minmax_list):
assert len(cuts_list) == len(minmax_list)
result = []
dimension = len(cuts_list)
for d in range(0, dimension):
dimension_series = _constant_slope_single_dimension(cuts_list[d], minmax_list[d])
result.append(dimension_series)
return result
def _constant_slope_single_dimension(cuts, min_max):
slope = _compute_slope(cuts, min_max)
dummy = min_max[MIN]
dummy_trap = [dummy, dummy, min_max[MIN], min_max[MIN]]
prev = dummy_trap
trap_series = prev
for i in range(0, len(cuts)):
trap = _build_single_trap(cuts[i], slope, prev)
trap_series += [trap[C], trap[D]]
prev = trap
trap_series += [min_max[MAX], min_max[MAX]]
dummy_vertex = 2
trap_series = trap_series[dummy_vertex:]
return trap_series
def _compute_slope(cuts, min_max):
first_cut = 2 * min_max[MIN] - cuts[0]
last_cut = 2 * min_max[MAX] - cuts[-1]
extended_cuts = [first_cut] + cuts + [last_cut]
delta_vector = [extended_cuts[idx + 1] - extended_cuts[idx] for idx in range(len(extended_cuts) - 1)]
# delta_vector = [abs(diff) for diff in delta_vector] ...yes or no?
delta_min_idx = int(np.argmin(delta_vector))
t_min = extended_cuts[delta_min_idx]
t_min_next = extended_cuts[delta_min_idx + 1]
slope = float(1) / (t_min_next - t_min)
return slope
def _build_single_trap(cut, slope, prev_trap):
a = prev_trap[C]
b = prev_trap[D]
c = cut + (float(1) / 2 * -slope)
d = cut - (float(1) / 2 * -slope)
return [a, b, c, d]