-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathseries_utilities.py
107 lines (80 loc) · 2.73 KB
/
series_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# coding=utf-8
from sympy import Symbol, limit
import numpy as np
MIN = 0
MAX = 1
# From a trap series [a1, b1, c1, d1, c2, d2, c3, d3] return a list of trap
# [[a1, b1, c1, d1], [a2, b2, c2, d2], [a3, b3, c3, d3]]
def split_in_trap(trap_series):
def loop(series, acc):
if len(series) < 4:
return acc
else:
acc.append(series[0:4])
return loop(series[2:], acc)
return loop(trap_series, [])
# From vector representation of a trap series extract left-most vertex for every trap
def extract_a_series(trap_series):
result = []
# remove min and max value
real_series = trap_series[2:-2]
for i in range(0, len(real_series), 2):
result += [real_series[i]]
return result
# From a list of left-most vertex and a cut series, recreate the vector representation of the trap series
def generate_series(a_series, cut_series, min_max):
result = []
for i in range(0, len(a_series)):
a = a_series[i]
cut = cut_series[i]
b = compute_b(a, cut)
result += [a, b]
result = [min_max[MIN], min_max[MIN]] + result + [min_max[MAX], min_max[MAX]]
return result
# From a cut and a vertex "a" on the left side, compute the vertex "b" on the right side (0.5 cut)
def compute_b(a, cut):
return (cut - a) * 2 + a
# Compute the search space for the optimization problem
def compute_bounds(a_series, cuts, min_max):
dummy_cuts = cuts + [min_max[MAX]]
first_lb = min_max[MIN]
first_lb = _fix_lb(first_lb, cuts[0], cuts[1])
lb = [first_lb]
ub = [dummy_cuts[0]]
for i in range(1, len(a_series)):
ith_lb = compute_b(lb[i - 1], dummy_cuts[i - 1])
ith_lb = _fix_lb(ith_lb, dummy_cuts[i], dummy_cuts[i + 1])
ith_ub = dummy_cuts[i]
lb.append(ith_lb)
ub.append(ith_ub)
return [lb, ub]
def _fix_lb(lb_i, cut_i, cut_i_next):
if compute_b(lb_i, cut_i) < cut_i_next:
return lb_i
while True:
lb_i += 0.01
if compute_b(lb_i, cut_i) < cut_i_next:
return lb_i
# Get the slope (in abs value) of every trap
def get_slope_list(trap_series, compute_slope_func):
real_series = trap_series[2:-2]
slope_list = []
height = 1
while len(real_series) > 0:
c = real_series[0]
d = real_series[1]
x1 = c
y1 = -height
x2 = d
y2 = 0
segment = compute_slope_func(x1, y1, x2, y2)
slope_list += [abs(segment)]
real_series = real_series[2:]
return slope_list
# Compute the slope, handling division-by-zero error and +inf/-inf values
def arctan_segment_slope(x1, y1, x2, y2):
dy = y2 - y1
dx = x2 - x1
x = Symbol('x')
slope = limit(dy / x, x, dx)
return np.arctan(float(slope))