Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

geeglm crashes with unstructured cov. and using "waves" #10

Open
Generalized opened this issue May 25, 2022 · 3 comments
Open

geeglm crashes with unstructured cov. and using "waves" #10

Generalized opened this issue May 25, 2022 · 3 comments

Comments

@Generalized
Copy link

Generalized commented May 25, 2022

Dear @hojsgaard , I noticed that the problem with crashing geeglm() still exists.

With the following data

data <- structure(list(Timepoint = structure(c(2L, 4L, 1L, 2L, 1L, 2L, 
3L, 1L, 2L, 3L, 1L, 2L, 1L, 3L, 1L, 2L, 4L, 1L, 2L, 4L, 1L, 3L, 
1L, 3L, 4L, 1L, 3L, 1L, 3L, 1L, 3L, 1L, 3L, 4L, 1L, 4L, 1L, 3L, 
1L, 2L, 1L, 2L, 1L, 1L, 2L, 4L, 1L, 3L, 1L, 2L, 4L, 1L, 2L, 2L, 
4L, 1L, 1L, 1L, 1L, 2L, 4L, 1L, 2L, 4L, 1L, 2L, 4L, 1L, 4L, 1L, 
1L, 1L, 1L, 3L, 1L, 3L, 1L, 2L, 4L, 1L, 2L, 4L, 1L, 1L, 2L, 4L, 
1L, 2L, 4L, 1L, 4L, 1L, 1L, 1L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 
3L, 4L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 1L, 1L, 2L, 4L, 1L, 2L, 4L, 
1L, 1L, 3L, 4L, 1L, 1L, 4L, 1L, 2L, 4L, 1L, 4L, 1L, 4L, 1L, 3L, 
4L, 1L, 3L, 1L, 1L, 1L, 3L, 4L, 1L, 1L, 1L, 3L, 1L, 2L, 1L, 3L, 
1L, 1L, 4L, 1L, 3L, 4L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 4L, 1L, 4L, 
1L, 1L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 1L, 2L, 
4L, 1L, 3L, 4L, 1L, 1L, 2L, 3L, 1L, 1L, 3L, 4L, 1L, 1L, 1L, 2L, 
4L, 1L, 1L, 3L, 1L, 1L, 4L, 1L, 1L, 2L, 4L, 1L, 3L, 1L, 3L, 4L, 
1L, 1L, 1L, 1L, 3L, 1L, 1L, 2L, 4L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
3L, 1L, 1L, 2L, 1L, 2L, 1L, 4L, 1L, 1L, 3L, 1L, 3L, 1L, 2L, 1L, 
1L, 1L, 3L, 1L, 2L, 1L), .Label = c("Baseline", "Time 1", 
"Time 2", "Time 3"), class = "factor"), Result = c(-2.4, 
-2.2, -2.3, -2.6, -2.9, -3.7, -2.9, -4.2, -3.7, -2.8, -3.8, -0.8, 
-2.2, -2, -2.6, -2.6, -2.7, -3.6, -1.2, -1.6, -2.7, -2.7, -2.7, 
-3.3, -3.1, -3.4, -3.3, -4.5, -2.4, -3.5, -2.2, -2.5, -1.7, -0.4, 
-2.1, -1.8, -2, -2, -2.6, -2.5, -2.6, -2, -3.3, -1.7, -2.6, -2.5, 
-2.7, -2.4, -2.6, -2, -2.1, -2.4, -2.5, -2.5, -2.5, -2.7, -1.1, 
-2.9, -3.5, -2.9, -2.7, -2.9, -1.7, -1.3, -2, -1.4, -1.7, -1.5, 
-1.3, -1.5, -2.6, -2.2, -2, -2.5, -2.9, -2.6, -2.6, -2.4, -2.3, 
-3.3, -2.6, -2.4, -2.7, -2.2, -2.1, -2.1, -3.1, -1.3, -1.2, -1.4, 
-0.3, -1.1, -2, -1.5, -1.6, -1.8, -2.7, -2.9, -2.4, -1.9, -2.7, 
-1.4, -1.9, -1.7, -2, -2.5, -2.8, -1.2, -1.3, -2.7, -2.5, -3.4, 
-2.9, -2.8, -2.7, -2.8, -1.7, -2.7, -3, -3.3, -2.3, -2.5, -3.3, 
-2.2, -2.3, -2.3, -2.8, -3, -2.9, -2.3, -2.4, -1.6, -1.8, -1.5, 
-1.4, -2.2, -2.4, -2.3, -2.7, -2.8, -2.6, -2.7, -3.6, -2.8, -2.9, 
-2.4, -2.5, -1.8, -2.3, -2.6, -2.7, -2, -2.3, -2.3, -1.5, -1.4, 
-1.5, -2, -2.7, -2.7, -2.8, -2.4, -2.7, -3.5, -4.3, -3, -3.2, 
-2.6, -2.5, -2.1, -3.2, -3.3, -2.7, -3.5, -3, -2.8, -2.4, -2.3, 
-2.3, -2.5, -3.2, -2.5, -2.5, -3.3, -3.9, -3.5, -4.7, -2.6, -2.5, 
-2.5, -3.6, -2.5, -1.7, -1.7, -1.8, -2.2, -3.3, -3.1, -3.2, -4.5, 
-1.8, -1.1, -1.6, -2.3, -2.6, -3.2, -2.6, -2.2, -2.1, -3.4, -2.4, 
-2.4, -1.1, -1.1, -1.4, -1.2, -1.8, -0.5, -2.3, -2.7, -2.8, -2.1, 
-2, -2.1, -1.6, -2.9, -2.1, -2.2, -2.6, -2.4, -1.6, -2.5, -4, 
-2.4, -2.7, -4, -3.64, -2.8, -3.1, -2.3, -1.9, -1.9, -2.5, -2.8, 
-2.4, -2.6, -2.2, -2.7, -3.1, -3, -2, -2.2), wave = c(2, 4, 1, 
2, 1, 2, 3, 1, 2, 3, 1, 2, 1, 3, 1, 2, 4, 1, 2, 4, 1, 3, 1, 3, 
4, 1, 3, 1, 3, 1, 3, 1, 3, 4, 1, 4, 1, 3, 1, 2, 1, 2, 1, 1, 2, 
4, 1, 3, 1, 2, 4, 1, 2, 2, 4, 1, 1, 1, 1, 2, 4, 1, 2, 4, 1, 2, 
4, 1, 4, 1, 1, 1, 1, 3, 1, 3, 1, 2, 4, 1, 2, 4, 1, 1, 2, 4, 1, 
2, 4, 1, 4, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 
1, 2, 4, 1, 1, 2, 4, 1, 2, 4, 1, 1, 3, 4, 1, 1, 4, 1, 2, 4, 1, 
4, 1, 4, 1, 3, 4, 1, 3, 1, 1, 1, 3, 4, 1, 1, 1, 3, 1, 2, 1, 3, 
1, 1, 4, 1, 3, 4, 1, 1, 1, 1, 1, 3, 1, 4, 1, 4, 1, 1, 2, 4, 1, 
3, 4, 1, 1, 1, 1, 1, 2, 4, 1, 2, 4, 1, 3, 4, 1, 1, 2, 3, 1, 1, 
3, 4, 1, 1, 1, 2, 4, 1, 1, 3, 1, 1, 4, 1, 1, 2, 4, 1, 3, 1, 3, 
4, 1, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 
1, 2, 1, 4, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1), ID = structure(c(9L, 
9L, 9L, 10L, 10L, 45L, 45L, 45L, 46L, 46L, 46L, 11L, 12L, 13L, 
13L, 47L, 47L, 47L, 48L, 48L, 48L, 25L, 25L, 26L, 26L, 26L, 49L, 
49L, 50L, 50L, 97L, 97L, 27L, 27L, 27L, 28L, 28L, 29L, 29L, 98L, 
98L, 51L, 51L, 135L, 82L, 82L, 82L, 83L, 83L, 14L, 14L, 14L, 
15L, 84L, 84L, 84L, 99L, 100L, 101L, 30L, 30L, 30L, 31L, 31L, 
31L, 16L, 16L, 16L, 17L, 17L, 102L, 103L, 32L, 85L, 85L, 104L, 
104L, 52L, 52L, 52L, 18L, 18L, 18L, 70L, 53L, 53L, 53L, 33L, 
33L, 33L, 54L, 54L, 105L, 106L, 19L, 19L, 34L, 34L, 86L, 107L, 
108L, 109L, 87L, 87L, 87L, 110L, 71L, 111L, 35L, 55L, 55L, 55L, 
112L, 88L, 88L, 88L, 56L, 56L, 56L, 72L, 57L, 57L, 57L, 136L, 
132L, 132L, 36L, 36L, 36L, 113L, 113L, 114L, 114L, 58L, 58L, 
58L, 115L, 115L, 89L, 116L, 59L, 59L, 59L, 20L, 117L, 118L, 118L, 
90L, 90L, 119L, 119L, 21L, 133L, 133L, 37L, 37L, 37L, 120L, 121L, 
122L, 1L, 38L, 38L, 60L, 60L, 123L, 123L, 124L, 61L, 61L, 61L, 
2L, 2L, 2L, 125L, 126L, 3L, 4L, 62L, 62L, 62L, 63L, 63L, 63L, 
64L, 64L, 64L, 73L, 65L, 65L, 65L, 74L, 5L, 5L, 5L, 75L, 76L, 
66L, 66L, 66L, 77L, 22L, 22L, 6L, 134L, 134L, 39L, 67L, 67L, 
67L, 40L, 40L, 7L, 7L, 7L, 8L, 127L, 68L, 23L, 23L, 78L, 91L, 
91L, 91L, 69L, 128L, 79L, 92L, 92L, 41L, 93L, 93L, 80L, 94L, 
94L, 24L, 24L, 95L, 95L, 129L, 42L, 42L, 43L, 43L, 96L, 96L, 
130L, 81L, 131L, 131L, 44L, 44L), .Label = c("86729771001", "86729771002", 
"86729771003", "86729771004", "86729771005", "86729771006", "86729771007", 
"86729771008", "86729772001", "86729772002", "86729772005", "86729772006", 
"86729772007", "86729772008", "86729772009", "86729772010", "86729772011", 
"86729772012", "86729772013", "86729772014", "86729772015", "86729772016", 
"86729772017", "86729772018", "86729773001", "86729773002", "86729773004", 
"86729773005", "86729773006", "86729773007", "86729773008", "86729773009", 
"86729773010", "86729773011", "86729773012", "86729773013", "86729773014", 
"86729773015", "86729773016", "86729773017", "86729773018", "86729773019", 
"86729773020", "86729773021", "86729774001", "86729774002", "86729774003", 
"86729774004", "86729774005", "86729774006", "86729774007", "86729774008", 
"86729774009", "86729774010", "86729774011", "86729774012", "86729774013", 
"86729774014", "86729774015", "86729774016", "86729774017", "86729774018", 
"86729774019", "86729774020", "86729774021", "86729774022", "86729774023", 
"86729775008", "86729775010", "86729776001", "86729776002", "86729776003", 
"86729776004", "86729776005", "86729776006", "86729776007", "86729776008", 
"86729776009", "86729776010", "86729776011", "86729776012", "86729777001", 
"86729777002", "86729777003", "86729777004", "86729777007", "86729777008", 
"86729777009", "86729777010", "86729777011", "86729777012", "86729777013", 
"86729777014", "86729777015", "86729777016", "86729777017", "86729778001", 
"86729778002", "86729778003", "86729778004", "86729778005", "86729778006", 
"86729778007", "86729778008", "86729778009", "86729778010", "86729778011", 
"86729778012", "86729778013", "86729778014", "86729778015", "86729778016", 
"86729778017", "86729778018", "86729778019", "86729778020", "86729778021", 
"86729778022", "86729778023", "86729778024", "86729778025", "86729778026", 
"86729778027", "86729778028", "86729778029", "86729778030", "86729778031", 
"86729778032", "86729778033", "86729778034", "86729778035", "86729779001", 
"86729779002", "86729779004", "86729780001", "86729780002"), class = "factor")), row.names = c(NA, 
-252L), class = "data.frame")

The geeglm works fine with this command:

mgee <- geeglm(Result ~ Timepoint,
               data = data, 
               id = ID, 
               family = gaussian,
               waves = wave,
               corstr = "exchangeable")

> coef(summary(mgee))
                Estimate Std.err    Wald  Pr(>|W|)
(Intercept)      -2.5708 0.06321 1653.88 0.000e+00
TimepointTime 1   0.4331 0.07225   35.94 2.038e-09
TimepointTime 2   0.3956 0.06580   36.14 1.835e-09
TimepointTime 3   0.4757 0.05645   71.00 0.000e+00

but crashes with changing the correlation structure to "unstructured"

# DON'T RUN (or it may crash your session)

mgee <- geeglm(Result ~ Timepoint,
               data = data, 
               id = ID, 
               family = gaussian,
               waves = wave,
               corstr = "unstructured")

I use R 3.6.3
geepack: 1.3.3

EDIT: Maybe it will help you - I re-run the analysis with the geeM package. It returned the following message:

> geem(Result ~ Timepoint,
+        data = data, 
+        id = ID, 
+        family = gaussian,
+        waves = wave,
+        corstr = "unstructured")

Error in updateAlphaUnstruc(Y, mu, VarFun, phi, id, len, StdErr, Resid,  : 
  Number of clusters of largest size is less than p.
@Generalized
Copy link
Author

Dear @hojsgaard , @ekstroem , @thomas-fung
Do you have any ideas on how to solve this problem? Let me provide another example:

Each subject has a sequence of measurements, at several timepoints, like Week 1, Week 2... Week 32.
I want to assess the change from baseline (already modelled as change) at each timepoint.

This one works, but subjects may have gaps in the measurements(!):

> mg <- geepack::geeglm(change ~ Time, data=x, 
+              family = "gaussian",
+              id = x$ID, 
+              corstr = "unstructured")
> 
> emg <- emmeans(mg, specs = ~Time)
> update(emg, infer = c(FALSE, TRUE), adjust="mvt")
 Time    emmean    SE  df z.ratio p.value
 Week 1  -0.317 0.132 Inf  -2.393  0.0717
 Week 2  -0.633 0.136 Inf  -4.643  <.0001
 Week 4  -0.719 0.178 Inf  -4.033  0.0004
 Week 8  -0.984 0.166 Inf  -5.929  <.0001
 Week 16 -1.198 0.162 Inf  -7.413  <.0001
 Week 32 -1.456 0.290 Inf  -5.021  <.0001

Covariance estimate used: vbeta 
P value adjustment: mvt method for 6 tests 

So let's address it using Waves (just numerical representation of the factor Time: 1, 2, 3... 6
This will CRASH your session:

> mg <- geepack::geeglm(change ~ Time, data=x, 
+              family = "gaussian",
+              id = x$ID, 
+              waves = x$Wave,
+              corstr = "unstructured")

It will work for AR1 and independence.

Data:

x <- structure(list(ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 9L, 9L, 
9L, 9L, 9L, 9L, 26L, 26L, 26L, 26L, 26L, 27L, 27L, 27L, 27L, 
27L, 27L, 28L, 28L, 28L, 28L, 28L, 29L, 29L, 29L, 29L, 29L, 30L, 
30L, 30L, 30L, 30L, 31L, 31L, 32L, 32L, 32L, 32L, 32L, 32L, 33L, 
33L, 33L, 33L, 33L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 
12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 
14L, 14L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 
17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 
19L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 
22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 23L, 24L, 24L, 24L, 
24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L, 34L, 34L, 34L, 34L, 34L, 
34L, 35L, 35L, 35L, 35L, 35L, 36L, 36L, 36L, 36L, 36L, 36L, 37L, 
37L, 37L, 37L, 37L, 38L, 38L, 38L, 38L, 38L, 39L, 39L, 39L, 39L, 
39L, 39L, 40L, 40L, 40L, 40L, 40L, 41L, 41L, 41L, 41L, 41L, 42L, 
42L, 42L, 42L, 43L, 43L, 43L, 44L, 44L, 44L, 44L, 44L, 45L, 45L, 
46L, 46L, 46L, 46L, 46L, 46L, 47L, 47L, 47L, 47L, 47L, 48L, 48L, 
48L, 48L, 48L, 48L, 49L, 49L, 49L, 49L, 49L, 49L, 50L, 50L, 50L, 
50L, 50L, 50L, 51L, 51L, 51L, 51L, 51L, 51L, 52L, 52L, 52L, 52L, 
53L, 53L, 53L, 53L, 53L, 54L, 54L, 54L, 54L, 54L, 55L, 55L, 55L, 
55L, 55L, 56L, 56L, 56L, 56L, 56L, 56L, 57L, 57L, 57L, 57L, 57L, 
57L, 64L, 64L, 64L, 64L, 64L, 65L, 65L, 65L, 65L, 65L, 65L, 66L, 
66L, 66L, 66L, 66L, 58L, 58L, 58L, 59L, 59L, 59L, 59L, 59L, 59L, 
60L, 60L, 60L, 60L, 60L, 61L, 61L, 61L, 61L, 61L, 61L, 62L, 62L, 
62L, 62L, 62L, 63L, 63L, 63L, 63L, 63L, 63L, 67L, 67L, 67L, 67L, 
67L, 67L, 68L, 68L, 68L, 68L, 68L, 68L, 69L, 69L, 69L, 69L, 70L, 
70L, 70L, 70L, 70L), levels = c("5501551", "5501552", "5501553", 
"5501554", "5501555", "5501556", "5501557", "5501558", "5501559", 
"5502010", "5502011", "5502012", "5502013", "5502014", "5502015", 
"5502016", "5502017", "5502018", "5502019", "5502020", "5502022", 
"5502023", "5502024", "5502025", "5502026", "5502551", "5502552", 
"5502554", "5502555", "5502556", "5502557", "5502558", "5502559", 
"5504551", "5504552", "5506551", "5506552", "5506553", "5506554", 
"5506555", "5506556", "5506557", "5506558", "5507551", "5507552", 
"5508551", "5508552", "5508553", "5508554", "5508555", "5508556", 
"5508557", "5508558", "5509551", "5509552", "5509553", "5509554", 
"5512551", "5513551", "5513552", "5513553", "5513554", "5513555", 
"5515501", "5515502", "5515503", "5516551", "5516552", "5517551", 
"5518551"), class = "factor"), Value = c(2.6, 2.6, 2.4, 1.2, 
0.8, 0.6, 3.4, 3.4, 1.4, 0.8, 0.8, 4.4, 2.6, 3, 2.6, 2.2, 2.6, 
2.2, 3.8, 3.2, 3.6, 3.8, 2.6, 2.8, 2.2, 1.6, 1.6, 1.2, 0.6, 0.6, 
1, 1, 0.4, 0.4, 0, 0, 1.2, 0.8, 1.8, 0.2, 0.2, 0.2, 0.4, 0.2, 
5.6, 5.4, 6, 5.4, 4.8, 2.4, 1.8, 1.6, 1.8, 0.6, 0.6, 2.2, 2.2, 
4, 2, 2.8, 3.4, 2.8, 2.6, 4.2, 3, 4, 2.4, 2.2, 3, 3, 3, 2.2, 
4.6, 4.4, 1.8, 1.4, 2.4, 4, 5.2, 5, 3.6, 3.4, 2.4, 3, 2.8, 3.2, 
3.2, 2.8, 2.6, 2.4, 1.6, 1.4, 2.8, 2.2, 2.2, 2.2, 3.6, 3.6, 3.6, 
3, 1.2, 0.2, 3.2, 3, 3, 3.2, 3.2, 0, 0, 0.2, 0, 0, 1.8, 0.2, 
0.2, 0, 0, 0, 4.2, 4.2, 4.6, 3.2, 3.6, 2.8, 2.6, 3, 2.8, 2.8, 
2.8, 3, 3.4, 2.8, 4.8, 3.4, 3.4, 3.2, 2.8, 2, 2.4, 2, 0.4, 0, 
2.8, 0.2, 0.2, 0.4, 0.4, 0.2, 2.8, 2.8, 2.2, 2.2, 2.4, 2.8, 1, 
0.8, 0.6, 0.2, 0.2, 0.2, 3, 2.8, 3.2, 3, 4.2, 1, 0.8, 0.8, 0.8, 
0.6, 0.6, 2.8, 3.4, 3.2, 3.2, 0.6, 2, 0.8, 1.4, 1, 1.8, 0.4, 
1.4, 2.2, 0.6, 3.6, 0.8, 1.2, 1, 0.8, 0.4, 0, 1.8, 2.2, 1.4, 
1.2, 0.6, 0.6, 3.4, 3, 2, 1.2, 0.6, 1.2, 1, 0.8, 0.2, 0.6, 2, 
2.6, 2.6, 2.4, 0.6, 0.8, 1.6, 0.8, 1, 1, 1, 0.2, 3.2, 3.4, 0.8, 
0.6, 0.8, 1.4, 0.6, 0.6, 4.2, 3.8, 3.8, 3.8, 3.8, 0.8, 0.8, 1.4, 
1.4, 0.6, 0, 2.8, 3.4, 3, 3.2, 1.6, 1.6, 0.8, 0.8, 0.4, 0.4, 
0.4, 0.4, 1.4, 0.8, 1, 0.8, 1.2, 1, 0, 1.6, 1.6, 1.2, 1.4, 0.8, 
0, 0, 0.6, 0.2, 0.2, 0.4, 0.4, 0, 1.8, 1.4, 1.8, 0.8, 1.6, 0.8, 
1, 0.6, 0.2, 0.2, 0.4, 1.2, 0.4, 0.2, 0.2, 0, 0, 3.8, 2.6, 2, 
1.4, 1.8, 1.6, 1.8, 2.4, 2.2, 2.4, 1.4, 2.6, 1.8, 1.2, 2, 2.2, 
3.8, 3.8, 3.4, 3.4, 2, 2.8, 2, 1.4, 0.4, 2.2, 3.2, 3.4, 1.6, 
1, 2.2, 0.8, 1, 0.6, 1.2, 2, 5.6, 5.4, 4.6, 4.2, 4, 0.8, 0.2, 
0.2, 0.4, 0, 0, 0.6, 0.6, 4.4, 0.8, 1.4, 0.8, 0.8, 0.6, 0.8, 
0.2, 0, 0.2, 1.8, 1.2, 1.6, 0.8, 0, 0, 0.4, 0.2, 0), change = c(-0.8, 
-0.8, -1, -2.2, -2.6, -2.8, -0.6, -0.6, -2.6, -3.2, -3.2, 1.4, 
-0.4, 0, -0.4, -0.8, 0.2, -0.2, 1.4, 0.8, 1.2, -1.2, -2.4, -2.2, 
-2.8, -3.4, -0.4, -0.8, -1.4, -1.4, -0.4, -0.4, -1, -1, -1.4, 
-1.4, -1.6, -2, 0, -1.6, -1.6, -1.6, -1.4, -1.6, 0.6, 0.4, 1, 
0.4, -0.2, 0.4, -0.2, -0.4, -0.2, -1.4, -1.4, 0.6, 0.6, 2.4, 
0.4, 1.2, -0.6, -1.2, -1.4, 0.2, -1, 0, -1.6, -1.8, -1, -1, 0.2, 
-0.6, 1.6, 1.4, -1.2, -1.6, -0.6, 1, 1.2, 1, -0.4, -0.6, -1.6, 
-0.2, -0.4, 0, 0, 1.4, 1.2, 1, 0.2, 0, -0.6, -1.2, -1.2, -1.2, 
-0.6, -0.6, -0.6, -1.2, -3, -4, -0.2, -0.4, -0.4, -0.2, -0.2, 
-1.2, -1.2, -1, -1.2, -1.2, 1.4, -0.2, -0.2, -0.4, -0.4, -0.4, 
0.2, 0.2, 0.6, -0.8, -0.4, 0, -0.2, 0.2, 0, 0.6, 0.6, 0.8, 1.2, 
0.6, -1.2, -2.6, -2.6, -2.8, -0.8, -1.6, -1.2, -1.6, -3.2, -3.6, 
0, -2.6, -2.6, -2.4, -2.4, -2.6, 0.6, 0.6, 0, 0, 0.2, 0.6, -0.4, 
-0.6, -0.8, -1.2, -1.2, -1.2, -0.2, -0.4, 0, -0.2, 1, -0.4, -0.6, 
-0.6, -0.6, -0.8, -0.8, -0.2, 0.4, 0.2, 0.2, -2.4, 0.8, -0.4, 
0.2, -0.2, 0.6, -0.8, -1.4, -0.6, -2.2, 0.8, -2, 0.6, 0.4, 0.2, 
-0.2, -0.6, -0.8, -0.4, -1.2, -1.4, -2, -2, -0.4, -0.8, -1.8, 
-2.6, -3.2, -2.2, -2.4, -2.6, -3.2, -2.8, -0.6, 0, 0, -0.2, -1, 
-0.8, 0, -3.2, -3, -3, -3, -3.8, 0, 0.2, -0.6, -0.8, -0.6, 0, 
-0.8, -0.8, 1.4, 1, 1, 1, 1, -2.4, -2.4, -1.8, -1.8, -2.6, -3.2, 
0.2, 0.8, 0.4, 0.6, -1, -1, -1, -1, -1.4, -1.4, -1.4, -1.4, -1.2, 
-1.8, -1.6, -1.8, -1.4, -1.6, -1.8, -0.2, -0.2, -0.6, -1.6, -2.2, 
-3, -3, -2.4, 0.2, 0.2, 0.4, 0.4, 0, 0.4, 0, 0.4, -0.6, 0.2, 
-1.4, -1.2, -1.6, -2, -2, -1.8, 0.2, -0.6, -0.8, -0.8, -1, -1, 
0.2, -1, -1.6, -2.2, -1.8, -0.8, -0.6, 0, -0.2, 0, -1, 0.8, 0, 
-0.6, 0.2, 0.4, 0.2, 0.2, -0.2, -0.4, -1.8, -1, -1.8, -2.4, -3.4, 
0.4, 1.4, 1.6, -0.2, -0.8, -3.2, -4.6, -4.4, -4.8, -4.2, -3.4, 
0.6, 0.4, -0.4, -0.8, -1, -0.8, -1.4, -1.4, -1.2, -1.6, -1.6, 
-1.2, -1.2, 2.6, -1, -0.4, -1, -0.4, -0.6, -0.4, -1, -1.2, -1, 
-0.8, -1.4, -1, -1.8, -2, -2, -1.6, -1.8, -2), Wave = c(1, 2, 
3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 
3, 4, 6, 1, 2, 4, 6, 1, 2, 3, 4, 5, 6, 3, 5, 1, 2, 3, 4, 5, 6, 
1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 
1, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 6, 1, 2, 3, 
4, 1, 2, 3, 4, 6, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 
1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 
2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 
2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 
6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 
5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 
1, 3, 4, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 
1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 
4, 5, 6, 1, 2, 3, 4, 1, 2, 3, 4, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 
5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 
4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 
6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 
4, 5, 6, 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 1, 2, 3, 4, 5), Time = structure(c(1L, 
2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 2L, 3L, 4L, 5L, 6L, 1L, 
2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 6L, 1L, 2L, 4L, 6L, 1L, 2L, 3L, 
4L, 5L, 6L, 3L, 5L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 
1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 6L, 
1L, 3L, 4L, 5L, 6L, 1L, 2L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 
4L, 6L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 6L, 1L, 2L, 3L, 4L, 1L, 
2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 
2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 1L, 2L, 
3L, 4L, 5L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 
4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 
2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 
2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 
2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 1L, 
2L, 3L, 4L, 1L, 3L, 4L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 1L, 2L, 3L, 
4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 
3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 
1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 
3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 
2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 
2L, 3L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 6L, 1L, 2L, 3L, 
4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 6L, 1L, 2L, 
3L, 4L, 5L, 6L, 1L, 2L, 3L, 4L, 5L, 6L, 3L, 4L, 5L, 6L, 1L, 2L, 
3L, 4L, 5L), levels = c("Week 1", "Week 2", "Week 4", "Week 8", 
"Week 16", "Week 32"), class = "factor")), row.names = c(NA, 
-356L), class = c("tbl_df", "tbl", "data.frame"))

@Generalized
Copy link
Author

Hello? Is this repository still active?

@ekstroem
Copy link
Collaborator

Yes it is.

However, we are currently busy with other parts of life. It hasn't been forgotten

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants