Skip to content

Files

Latest commit

 

History

History
157 lines (104 loc) · 5.86 KB

README.md

File metadata and controls

157 lines (104 loc) · 5.86 KB

Interactive Predicate Learning for Robot Planning

This repo contains the simulation code of our RSS 2024 paper InterPreT: Interactive Predicate Learning from Language Feedback for Generalizable Task Planning.

InterPreT is a LLM-powered framework that learns PDDL domains (symbolic predicates and operators) from language feedback for long-horizon, generalizable robot task planning.

Citation

If you find this repo useful, please consider citing our paper:

@inproceedings{han2024interpret,
  title={InterPreT: Interactive Predicate Learning from Language Feedback for Generalizable Task Planning}, 
  author={Muzhi Han and Yifeng Zhu and Song-Chun Zhu and Ying Nian Wu and Yuke Zhu},
  booktitle = {Robotics: Science and Systems (RSS)},
  year = {2024}
}

Installation

Configure conda dependencies

We use Anaconda as the default way to configure dependency.

Clone the repo, and configure conda environment with dependencies

cd $your_workspace
git clone https://github.com/hmz-15/Interactive-Predicate-Learning.git

cd Interactive-Predicate-Learning
conda env create -f environment.yml

Before running any scripts below, always remember to activate the conda env first.

conda activate interactive_predicate_learning

Install PDDL planners

Mke sure you have cmake installed first. You can install it with

sudo apt-get install cmake

Clone and build pddlgym_planners

cd $your_workspace/Interactive-Predicate-Learning
conda activate interactive_predicate_learning

git clone https://github.com/hmz-15/pddlgym_planners.git
cd pddlgym_planners
pip install -e .
cd ..

Fast Downward planner will build the first time it is imported.

OpenAI GPT-4 API Keys

Create a folder named openai_keys under the project directory, and create a file named openai_key.json under the folder. Fill the json file with:

{
    "key": "xxx",
    "org": "xxx",
    "proxy" : "xxx"
}

The org and proxy fields are optional.

Usage

This repo adopts a unified way to run all the training and testing scripts. It uses a single main.py file under predicate_learning, while the configs are managed with hydra-core.

The main.py script takes a few core arguments:

  • world: the name of environment, choose from StoreObjects, SetTable, CookMeal
  • mode: running mode, train or test. Different modes correspond to diferent tasks. The tasks are loaded from json files in predicate_learning/predicate_gym/domains/$world/$mode; these json files are generated from predicate_learning/configs/world
  • agent: the name of agent that learns and solves the tasks
  • render: (optional) whether to visualize and save key frames, default to true
  • save_dir: (optional) dir to save results, default to saved_runs/run_${mode}/${now:%Y-%m-%d-%H-%M-%S}/$world_$agent

Quickstart

Before running InterPreT, you can see how the domains and tasks are like using simple agents:

  • RandomPlanAgent: agent that plan random actions
  • OraclePlanAgent: agent that use ground truth PDDL to plan optimal actions
python -m predicate_learning.main --config-name=run_single_mode mode=test world=StoreObjects render=true agent=OraclePlanAgent

Feel free to try different world, mode, and agent. Delay expected to build PDDL planners the first time you run OraclePlanAgent.

Learn predicates & operators with InterPreT

InterPreT is implemented as LearnPDDLAgent. It is the only agent that requires a training phase to learn knowledge. Other LLM-based agents directly learn from few-shot planning examples.

python -m predicate_learning.main --config-name=run_single_mode mode=train world=StoreObjects render=true agent=LearnPDDLAgent

Optionally, you can warm-up learning with predicates learned in other domains:

  • Set load_agent_knowledge to true
  • Set agent.load_path to the directory of saved run

Run test with InterPreT

To run test with InterPreT, we need to load learned predicates and operators from training runs. We provide example saved training runs for all three domains in interpret_results/.

python -m predicate_learning.main --config-name=run_single_mode mode=test world=StoreObjects agent=LearnPDDLAgent render=true agent.load_path=interpret_results/StoreObjects_LearnPDDLAgent
  • agent.load_path: you can change to your saved training run

Run test with other baseline agents

python -m predicate_learning.main --config-name=run_single_mode mode=test world=StoreObjects agent=LLMPlanAgent render=true agent.use_learned_predicates=false agent.use_few_shot_demos=true

Inner Monologue + Object + Scene (use predicates learned with InterPreT)

python -m predicate_learning.main --config-name=run_single_mode mode=test world=StoreObjects agent=LLMPlanAgent render=true agent.load_path=interpret_results/StoreObjects_LearnPDDLAgent agent.use_few_shot_demos=true agent.use_both_text_and_predicates=true
  • agent.load_path: you can change to your saved training run

Inner Monologue + Object + Scene + Precond (use predicates learned with InterPreT)

python -m predicate_learning.main --config-name=run_single_mode mode=test world=StoreObjects agent=LLMPlanPrecondAgent render=true agent.load_path=interpret_results/StoreObjects_LearnPDDLAgent agent.use_few_shot_demos=true agent.use_both_text_and_predicates=true
  • agent.load_path: you can change to your saved training run
python -m predicate_learning.main --config-name=run_single_mode_cap mode=test world=StoreObjects agent=CaPAgent render=true