forked from tbepler/protein-sequence-embedding-iclr2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_similarity.py
399 lines (302 loc) · 14.7 KB
/
train_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
from __future__ import print_function,division
import numpy as np
import pandas as pd
import sys
from scipy.stats import pearsonr, spearmanr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
import torch.utils.data
from src.alphabets import Uniprot21
import src.scop as scop
from src.utils import pack_sequences, unpack_sequences
from src.utils import PairedDataset, AllPairsDataset, collate_paired_sequences
from src.utils import MultinomialResample
import src.models.embedding
import src.models.comparison
def main():
import argparse
parser = argparse.ArgumentParser('Script for training embedding model on SCOP.')
parser.add_argument('--dev', action='store_true', help='use train/dev split')
parser.add_argument('-m', '--model', choices=['ssa', 'ua', 'me'], default='ssa', help='alignment scoring method for comparing sequences in embedding space [ssa: soft symmetric alignment, ua: uniform alignment, me: mean embedding] (default: ssa)')
parser.add_argument('--allow-insert', action='store_true', help='model insertions (default: false)')
parser.add_argument('--norm', choices=['l1', 'l2'], default='l1', help='comparison norm (default: l1)')
parser.add_argument('--rnn-type', choices=['lstm', 'gru'], default='lstm', help='type of RNN block to use (default: lstm)')
parser.add_argument('--embedding-dim', type=int, default=100, help='embedding dimension (default: 100)')
parser.add_argument('--input-dim', type=int, default=512, help='dimension of input to RNN (default: 512)')
parser.add_argument('--rnn-dim', type=int, default=512, help='hidden units of RNNs (default: 512)')
parser.add_argument('--num-layers', type=int, default=3, help='number of RNN layers (default: 3)')
parser.add_argument('--dropout', type=float, default=0, help='dropout probability (default: 0)')
parser.add_argument('--epoch-size', type=int, default=100000, help='number of examples per epoch (default: 100,000)')
parser.add_argument('--epoch-scale', type=int, default=5, help='scaling on epoch size (default: 5)')
parser.add_argument('--num-epochs', type=int, default=100, help='number of epochs (default: 100)')
parser.add_argument('--batch-size', type=int, default=64, help='minibatch size (default: 64)')
parser.add_argument('--weight-decay', type=float, default=0, help='L2 regularization (default: 0)')
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--tau', type=float, default=0.5, help='sampling proportion exponent (default: 0.5)')
parser.add_argument('--augment', type=float, default=0, help='probability of resampling amino acid for data augmentation (default: 0)')
parser.add_argument('--lm', help='pretrained LM to use as initial embedding')
parser.add_argument('-o', '--output', help='output file path (default: stdout)')
parser.add_argument('--save-prefix', help='path prefix for saving models')
parser.add_argument('-d', '--device', type=int, default=-2, help='compute device to use')
args = parser.parse_args()
prefix = args.output
## set the device
d = args.device
use_cuda = (d != -1) and torch.cuda.is_available()
if d >= 0:
torch.cuda.set_device(d)
## make the datasets
astral_train_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.fa'
astral_testpairs_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.test.sampledpairs.txt'
if args.dev:
astral_train_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.train.fa'
astral_testpairs_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.dev.sampledpairs.txt'
alphabet = Uniprot21()
print('# loading training sequences:', astral_train_path, file=sys.stderr)
with open(astral_train_path, 'rb') as f:
names_train, structs_train, sequences_train = scop.parse_astral(f, encoder=alphabet)
x_train = [torch.from_numpy(x).long() for x in sequences_train]
if use_cuda:
x_train = [x.cuda() for x in x_train]
y_train = torch.from_numpy(structs_train)
print('# loaded', len(x_train), 'training sequences', file=sys.stderr)
print('# loading test sequence pairs:', astral_testpairs_path, file=sys.stderr)
test_pairs_table = pd.read_csv(astral_testpairs_path, sep='\t')
x0_test = [x.encode('utf-8').upper() for x in test_pairs_table['sequence_A']]
x0_test = [torch.from_numpy(alphabet.encode(x)).long() for x in x0_test]
x1_test = [x.encode('utf-8').upper() for x in test_pairs_table['sequence_B']]
x1_test = [torch.from_numpy(alphabet.encode(x)).long() for x in x1_test]
if use_cuda:
x0_test = [x.cuda() for x in x0_test]
x1_test = [x.cuda() for x in x1_test]
y_test = test_pairs_table['similarity'].values
y_test = torch.from_numpy(y_test).long()
dataset_test = PairedDataset(x0_test, x1_test, y_test)
print('# loaded', len(x0_test), 'test pairs', file=sys.stderr)
## make the dataset iterators
scale = args.epoch_scale
epoch_size = args.epoch_size
batch_size = args.batch_size
# precompute the similarity pairs
y_train_levels = torch.cumprod((y_train.unsqueeze(1) == y_train.unsqueeze(0)).long(), 2)
# data augmentation by resampling amino acids
augment = None
p = 0
if args.augment > 0:
p = args.augment
trans = torch.ones(len(alphabet),len(alphabet))
trans = trans/trans.sum(1, keepdim=True)
if use_cuda:
trans = trans.cuda()
augment = MultinomialResample(trans, p)
print('# resampling amino acids with p:', p, file=sys.stderr)
dataset_train = AllPairsDataset(x_train, y_train_levels, augment=augment)
similarity = y_train_levels.numpy().sum(2)
levels,counts = np.unique(similarity, return_counts=True)
order = np.argsort(levels)
levels = levels[order]
counts = counts[order]
print('#', levels, file=sys.stderr)
print('#', counts/np.sum(counts), file=sys.stderr)
weight = counts**0.5
print('#', weight/np.sum(weight), file=sys.stderr)
weight = counts**0.33
print('#', weight/np.sum(weight), file=sys.stderr)
weight = counts**0.25
print('#', weight/np.sum(weight), file=sys.stderr)
tau = args.tau
print('# using tau:', tau, file=sys.stderr)
print('#', counts**tau/np.sum(counts**tau), file=sys.stderr)
weights = counts**tau/counts
weights = weights[similarity].ravel()
#weights = np.ones(len(dataset_train))
sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, epoch_size)
# two training dataset iterators for sampling pairs of sequences for training
train_iterator = torch.utils.data.DataLoader(dataset_train
, batch_size=batch_size
, sampler=sampler
, collate_fn=collate_paired_sequences
)
test_iterator = torch.utils.data.DataLoader(dataset_test
, batch_size=batch_size
, collate_fn=collate_paired_sequences
)
## initialize the model
rnn_type = args.rnn_type
rnn_dim = args.rnn_dim
num_layers = args.num_layers
embedding_size = args.embedding_dim
input_dim = args.input_dim
dropout = args.dropout
allow_insert = args.allow_insert
print('# initializing model with:', file=sys.stderr)
print('# embedding_size:', embedding_size, file=sys.stderr)
print('# input_dim:', input_dim, file=sys.stderr)
print('# rnn_dim:', rnn_dim, file=sys.stderr)
print('# num_layers:', num_layers, file=sys.stderr)
print('# dropout:', dropout, file=sys.stderr)
print('# allow_insert:', allow_insert, file=sys.stderr)
compare_type = args.model
print('# comparison method:', compare_type, file=sys.stderr)
lm = None
if args.lm is not None:
lm = torch.load(args.lm)
lm.eval()
## do not update the LM parameters
for param in lm.parameters():
param.requires_grad = False
print('# using LM:', args.lm, file=sys.stderr)
if num_layers > 0:
embedding = src.models.embedding.StackedRNN(len(alphabet), input_dim, rnn_dim, embedding_size
, nlayers=num_layers, dropout=dropout, lm=lm)
else:
embedding = src.models.embedding.Linear(len(alphabet), input_dim, embedding_size, lm=lm)
if args.norm == 'l1':
norm = src.models.comparison.L1()
print('# norm: l1', file=sys.stderr)
elif args.norm == 'l2':
norm = src.models.comparison.L2()
print('# norm: l2', file=sys.stderr)
model = src.models.comparison.OrdinalRegression(embedding, 5, align_method=compare_type
, compare=norm, allow_insertions=allow_insert
)
if use_cuda:
model.cuda()
## setup training parameters and optimizer
num_epochs = args.num_epochs
weight_decay = args.weight_decay
lr = args.lr
print('# training with Adam: lr={}, weight_decay={}'.format(lr, weight_decay), file=sys.stderr)
params = [p for p in model.parameters() if p.requires_grad]
optim = torch.optim.Adam(params, lr=lr, weight_decay=weight_decay)
## train the model
print('# training model', file=sys.stderr)
save_prefix = args.save_prefix
output = args.output
if output is None:
output = sys.stdout
else:
output = open(output, 'w')
digits = int(np.floor(np.log10(num_epochs))) + 1
line = '\t'.join(['epoch', 'split', 'loss', 'mse', 'accuracy', 'r', 'rho' ])
print(line, file=output)
for epoch in range(num_epochs):
# train epoch
model.train()
it = 0
n = 0
loss_estimate = 0
mse_estimate = 0
acc_estimate = 0
for x0,x1,y in train_iterator: # zip(train_iterator_0, train_iterator_1):
if use_cuda:
y = y.cuda()
y = Variable(y)
b = len(x0)
x = x0 + x1
x,order = pack_sequences(x)
x = PackedSequence(Variable(x.data), x.batch_sizes)
z = model(x) # embed the sequences
z = unpack_sequences(z, order)
z0 = z[:b]
z1 = z[b:]
logits = []
for i in range(b):
z_a = z0[i]
z_b = z1[i]
logits.append(model.score(z_a, z_b))
logits = torch.stack(logits, 0)
loss = F.binary_cross_entropy_with_logits(logits, y.float())
loss.backward()
optim.step()
optim.zero_grad()
model.clip() # projected gradient for bounding ordinal regressionn parameters
p = F.sigmoid(logits)
ones = p.new(b,1).zero_() + 1
p_ge = torch.cat([ones, p], 1)
p_lt = torch.cat([1-p, ones], 1)
p = p_ge*p_lt
p = p/p.sum(1,keepdim=True) # make sure p is normalized
_,y_hard = torch.max(p, 1)
levels = torch.arange(5).to(p.device)
y_hat = torch.sum(p*levels, 1)
y = torch.sum(y.data, 1)
loss = F.cross_entropy(p, y) # calculate cross entropy loss from p vector
correct = torch.sum((y == y_hard).float())
mse = torch.sum((y.float() - y_hat)**2)
n += b
delta = b*(loss.item() - loss_estimate)
loss_estimate += delta/n
delta = correct.item() - b*acc_estimate
acc_estimate += delta/n
delta = mse.item() - b*mse_estimate
mse_estimate += delta/n
if (n - b)//100 < n//100:
print('# [{}/{}] training {:.1%} loss={:.5f}, mse={:.5f}, acc={:.5f}'.format(epoch+1
, num_epochs
, n/epoch_size
, loss_estimate
, mse_estimate
, acc_estimate
)
, end='\r', file=sys.stderr)
print(' '*80, end='\r', file=sys.stderr)
line = '\t'.join([str(epoch+1).zfill(digits), 'train', str(loss_estimate)
, str(mse_estimate), str(acc_estimate), '-', '-'])
print(line, file=output)
output.flush()
# eval and save model
model.eval()
y = []
logits = []
with torch.no_grad():
for x0,x1,y_mb in test_iterator:
if use_cuda:
y_mb = y_mb.cuda()
y.append(y_mb.long())
b = len(x0)
x = x0 + x1
x,order = pack_sequences(x)
x = PackedSequence(Variable(x.data), x.batch_sizes)
z = model(x) # embed the sequences
z = unpack_sequences(z, order)
z0 = z[:b]
z1 = z[b:]
for i in range(b):
z_a = z0[i]
z_b = z1[i]
logits.append(model.score(z_a, z_b))
y = torch.cat(y, 0)
logits = torch.stack(logits, 0)
p = F.sigmoid(logits).data
ones = p.new(p.size(0),1).zero_() + 1
p_ge = torch.cat([ones, p], 1)
p_lt = torch.cat([1-p, ones], 1)
p = p_ge*p_lt
p = p/p.sum(1,keepdim=True) # make sure p is normalized
loss = F.cross_entropy(p, y).item()
_,y_hard = torch.max(p, 1)
levels = torch.arange(5).to(p.device)
y_hat = torch.sum(p*levels, 1)
accuracy = torch.mean((y == y_hard).float()).item()
mse = torch.mean((y.float() - y_hat)**2).item()
y = y.cpu().numpy()
y_hat = y_hat.cpu().numpy()
r,_ = pearsonr(y_hat, y)
rho,_ = spearmanr(y_hat, y)
line = '\t'.join([str(epoch+1).zfill(digits), 'test', str(loss), str(mse)
, str(accuracy), str(r), str(rho)])
print(line, file=output)
output.flush()
# save the model
if save_prefix is not None:
save_path = save_prefix + '_epoch' + str(epoch+1).zfill(digits) + '.sav'
model.cpu()
torch.save(model, save_path)
if use_cuda:
model.cuda()
if __name__ == '__main__':
main()