-
Notifications
You must be signed in to change notification settings - Fork 19
/
args_fusion.py
38 lines (28 loc) · 1.33 KB
/
args_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class args():
# training args
epochs = 2 #"number of training epochs, default is 2"
batch_size = 4 #"batch size for training, default is 4"
dataset_ir = "path of KAIST infrared images"
dataset_vi = "path of KAIST visible images"
HEIGHT = 256
WIDTH = 256
save_fusion_model = "models/train/fusionnet/"
save_loss_dir = './models/train/loss_fusionnet/'
# save_fusion_model_noshort = "models/train/fusionnet_noshort/"
# save_loss_dir_noshort = './models/train/loss_fusionnet_noshort/'
#
# save_fusion_model_onestage = "models/train/fusionnet_onestage/"
# save_loss_dir_onestage = './models/train/loss_fusionnet_onestage/'
image_size = 256 #"size of training images, default is 256 X 256"
cuda = 1 #"set it to 1 for running on GPU, 0 for CPU"
seed = 42 #"random seed for training"
lr = 1e-4 #"learning rate, default is 0.001"
log_interval = 10 #"number of images after which the training loss is logged, default is 500"
resume_fusion_model = None
# nest net model
resume_nestfuse = './models/nestfuse/nestfuse_gray_1e2.model'
# resume_nestfuse = None
# fusion net(RFN) model
# fusion_model = "./models/fusionnet/3_Final_epoch_4_resConv_1e4ssimVI_feaAdd0123_05vi_35ir.model"
# fusion_model = "./models/fusionnet/3_Final_epoch_4_resConv_1e4ssimVI_feaAdd0123_05vi_35ir_nodense_in_decoder.model"
fusion_model = './models/rfn_twostage/'