@@ -110,12 +110,16 @@ for (r in 1:length(counts.df.sk$pathway)){
110
110
ggplot(counts.df.sk , aes(group = type , y = counts , x = reorder(pathway ,- sort ))) +
111
111
geom_line(aes(color = type )) +
112
112
geom_point(aes(color = type )) +
113
- xlab(" pathways " )+
114
- ylab(" number of genes " )+
113
+ xlab(" Pathways " )+
114
+ ylab(" Counts by Type " )+
115
115
theme(
116
116
axis.text.x = element_blank(),
117
117
axis.ticks.x = element_blank(),
118
- legend.position = " none" )
118
+ panel.background = element_rect(fill = ' white' ),
119
+ legend.position = " none" ,
120
+ axis.text = element_text(size = 16 ),
121
+ axis.title = element_text(size = 16 )
122
+ )
119
123
120
124
# # plot rates independently sorted
121
125
counts.df.sk.tp <- counts.df.sk [counts.df.sk $ type == " TP" ,2 : 1 ]
@@ -135,8 +139,8 @@ counts.df.sk.fn$type<-c(rep("2.FN"))
135
139
ggplot(counts.df.sk.tp , aes(y = counts ,x = sort ,color = " red" ))+ geom_area(fill = " #619CFF" ) +
136
140
geom_area(data = counts.df.sk.fn , aes(y = counts ,x = sort ,color = " blue" ), fill = " #F8766D" ) +
137
141
geom_area(data = counts.df.sk.fp , aes(y = counts ,x = sort ,color = " green" ), fill = " #00BA38" ) +
138
- xlab(" pathways " )+
139
- ylab(" number of genes " )+
142
+ xlab(" Independently Ordered Pathways " )+
143
+ ylab(" Stacked Counts by Type " )+
140
144
scale_x_continuous(breaks = c(1 ,100 ,200 ,300 ,400 ), expand = c(0 ,0 ))+
141
145
scale_y_continuous(expand = c(0 ,0 ))+
142
146
theme(
@@ -149,14 +153,16 @@ counts.df.sk.indi<-rbind(counts.df.sk.fp,counts.df.sk.fn,counts.df.sk.tp)
149
153
p <- ggplot(counts.df.sk.indi , aes(y = counts , x = sort , fill = type ))
150
154
p + geom_area() +
151
155
scale_fill_manual(values = c(" #00BA38" ," #F8766D" ," #619CFF" )) +
152
- xlab(" pathways " )+
153
- ylab(" number of genes " )+
154
- scale_x_continuous(breaks = c(1 ,100 ,200 ,300 ,400 ), expand = c(0 ,0 ))+
156
+ xlab(" Independently Ordered Pathways " )+
157
+ ylab(" Stacked Counts by Type " )+
158
+ scale_x_continuous(breaks = c(1 ,100 ,200 ,300 ,400 ), expand = c(0 ,0 ))+
155
159
scale_y_continuous(expand = c(0 ,0 ))+
156
160
theme(
157
161
panel.background = element_rect(fill = ' white' ),
158
- legend.position = " none"
159
- )
162
+ legend.position = " none" ,
163
+ axis.text = element_text(size = 22 ),
164
+ axis.title = element_text(size = 22 )
165
+ )
160
166
161
167
# median and means
162
168
tp.med <- median(unlist(counts.df.sk.tp $ counts ))
0 commit comments