forked from robjhyndman/ETC3550Slides
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trend_derivations.qmd
51 lines (47 loc) · 1.98 KB
/
trend_derivations.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
title: Deriving models for ETS trend models
author: Rob J Hyndman
branding: false
fontfamily: mathpazo
format: memo-pdf
---
## ETS(A,A,N) {-}
Component form:\vspace*{-0.8cm}
\begin{align*}
\hat{y}_{t+h|t} &= \ell_{t} + hb_{t} \\
\hat{y}_{t|t-1} &= \ell_{t-1} + b_{t-1} \\
\ell_{t} &= \alpha y_{t} + (1 - \alpha)(\ell_{t-1} + b_{t-1})\\
b_{t} &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 -\beta^*) b_{t-1}.
\end{align*}
Model form:\vspace*{-0.8cm}
\begin{align*}
y_t &= \hat{y}_{t|t-1} + \varepsilon_t \\
&= \ell_{t-1} + b_{t-1} + \varepsilon_t \\
\ell_t &= \alpha y_{t} + (1 - \alpha)(\ell_{t-1} + b_{t-1})\\
&= \alpha (\ell_{t-1} + b_{t-1} + \varepsilon_t ) + (1 - \alpha)(\ell_{t-1} + b_{t-1})\\
&= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\
b_t &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 -\beta^*) b_{t-1}\\
&= \beta^*(b_{t-1} + \alpha \varepsilon_t ) + (1 -\beta^*) b_{t-1}\\
&= b_{t-1} + \alpha\beta^* \varepsilon_t \\
&= b_{t-1} + \beta \varepsilon_t \qquad\text{where $\beta = \alpha\beta^*$.}
\end{align*}
## ETS(A,Ad,N) {-}
Component form:\vspace*{-0.8cm}
\begin{align*}
\hat{y}_{t+h|t} &= \ell_{t} + (\phi+\phi^2 + \dots + \phi^{h})b_{t} \\
\hat{y}_{t|t-1} &= \ell_{t-1} + \phi b_{t-1} \\
\ell_{t} &= \alpha y_{t} + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})\\
b_{t} &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 -\beta^*)\phi b_{t-1}.
\end{align*}
Model form:\vspace*{-0.8cm}
\begin{align*}
y_t &= \hat{y}_{t|t-1} + \varepsilon_t \\
&= \ell_{t-1} + \phi b_{t-1} + \varepsilon_t \\
\ell_t &= \alpha y_{t} + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})\\
&= \alpha (\ell_{t-1} + \phi b_{t-1} + \varepsilon_t ) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})\\
&= \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t \\
b_t &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 -\beta^*)\phi b_{t-1}\\
&= \beta^*(\phi b_{t-1} + \alpha \varepsilon_t ) + (1 -\beta^*)\phi b_{t-1}\\
&= \phi b_{t-1} + \alpha\beta^* \varepsilon_t \\
&= \phi b_{t-1} + \beta \varepsilon_t\qquad\text{where $\beta = \alpha\beta^*$.}
\end{align*}