forked from robjhyndman/ETC3550Slides
-
Notifications
You must be signed in to change notification settings - Fork 0
/
3-decomposition.qmd
178 lines (150 loc) · 6.32 KB
/
3-decomposition.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
title: "ETC3550/ETC5550 Applied forecasting"
author: "Ch3. Time series decomposition"
institute: "OTexts.org/fpp3/"
pdf-engine: pdflatex
fig-width: 7.5
fig-height: 3
format:
beamer:
theme: monash
aspectratio: 169
fontsize: 14pt
section-titles: false
knitr:
opts_chunk:
dev: "cairo_pdf"
include-in-header: header.tex
execute:
echo: false
message: false
warning: false
---
```{r setup, include=FALSE}
source("setup.R")
library(purrr)
library(transformr) # Just to get it on renv
library(gganimate)
library(latex2exp)
```
## The ABS stuff-up
\fullheight{abs1}
## The ABS stuff-up
\fullheight{abs2}
## The ABS stuff-up
\fullheight{abs3}
## The ABS stuff-up
```{r abs1, echo=FALSE}
employed <- tsibble(
Time = yearmonth("1978 Feb") + 0:439,
Employed = c(
5985.7, 6040.6, 6054.2, 6038.3, 6031.3, 6036.1, 6005.4, 6024.3, 6045.9, 6033.8, 6125.4, 5971.3,
6050.7, 6096.2, 6087.7, 6075.6, 6095.7, 6103.9, 6078.5, 6157.8, 6164.0, 6188.8, 6257.2, 6112.9,
6207.2, 6278.7, 6224.9, 6273.4, 6269.9, 6314.1, 6281.4, 6360.0, 6320.2, 6342.0, 6426.6, 6253.0,
6356.5, 6428.1, 6426.3, 6412.4, 6413.9, 6425.3, 6393.7, 6502.7, 6445.3, 6433.3, 6506.9, 6355.5,
6432.4, 6497.4, 6431.6, 6440.9, 6414.3, 6425.9, 6379.3, 6443.5, 6421.1, 6366.8, 6370.1, 6172.0,
6263.9, 6310.3, 6254.5, 6272.8, 6266.5, 6295.0, 6241.2, 6358.2, 6336.1, 6377.5, 6456.5, 6251.4,
6365.4, 6503.2, 6477.6, 6489.7, 6499.0, 6528.7, 6466.1, 6579.8, 6553.2, 6576.1, 6636.0, 6452.4,
6595.7, 6657.4, 6588.8, 6657.9, 6659.4, 6703.4, 6675.5, 6814.7, 6771.1, 6881.9, 6910.8, 6753.6,
6861.9, 6961.9, 6997.9, 6979.0, 7007.7, 6991.5, 6918.5, 7040.6, 7030.4, 7034.2, 7116.8, 6902.5,
7022.3, 7133.4, 7109.6, 7103.5, 7128.9, 7175.6, 7092.3, 7186.5, 7177.4, 7182.2, 7330.7, 7169.4,
7247.3, 7397.4, 7383.4, 7354.8, 7378.3, 7383.1, 7353.3, 7503.2, 7477.3, 7508.6, 7622.9, 7423.8,
7566.5, 7634.6, 7678.4, 7720.8, 7711.0, 7740.8, 7715.3, 7841.6, 7806.5, 7862.4, 7935.5, 7707.7,
7803.0, 7874.1, 7887.9, 7908.5, 7900.3, 7919.4, 7808.0, 7905.5, 7848.9, 7826.9, 7915.5, 7641.3,
7708.7, 7715.4, 7717.2, 7703.7, 7678.1, 7583.0, 7620.7, 7713.2, 7638.0, 7614.9, 7712.2, 7518.9,
7597.2, 7646.2, 7644.1, 7631.4, 7637.3, 7668.3, 7613.4, 7709.7, 7665.7, 7587.4, 7693.4, 7533.7,
7531.0, 7645.7, 7572.6, 7620.5, 7627.9, 7646.5, 7589.4, 7747.6, 7738.8, 7744.9, 7842.1, 7646.8,
7738.6, 7824.2, 7827.4, 7857.9, 7878.4, 7966.0, 7861.7, 8054.4, 7997.2, 8003.3, 8135.5, 7928.4,
8049.9, 8118.1, 8174.6, 8165.2, 8205.6, 8229.0, 8165.9, 8300.4, 8232.6, 8300.3, 8395.7, 8166.7,
8246.6, 8280.4, 8248.0, 8297.1, 8311.7, 8332.1, 8265.9, 8373.0, 8319.4, 8314.4, 8431.4, 8235.2,
8291.4, 8347.5, 8343.1, 8330.2, 8345.6, 8374.9, 8250.3, 8474.0, 8405.2, 8462.1, 8540.5, 8334.7,
8413.0, 8460.0, 8499.9, 8482.5, 8516.8, 8541.9, 8455.2, 8653.2, 8601.0, 8554.3, 8696.5, 8477.4,
8556.5, 8618.9, 8631.9, 8606.5, 8673.2, 8706.7, 8603.6, 8777.1, 8755.3, 8763.7, 8900.7, 8628.2,
8754.4, 8830.7, 8882.2, 8865.0, 8922.0, 9020.0, 8911.6, 9061.3, 8973.1, 8912.7, 9059.6, 8834.9,
8920.9, 8956.0, 9023.6, 9004.6, 9021.9, 9048.9, 8971.9, 9105.9, 9058.7, 9055.6, 9177.1, 8993.4,
9092.3, 9128.5, 9129.5, 9134.7, 9180.8, 9194.5, 9150.3, 9303.5, 9249.1, 9286.7, 9439.7, 9281.7,
9372.6, 9362.1, 9365.6, 9380.1, 9370.4, 9363.9, 9327.0, 9486.1, 9447.8, 9427.7, 9573.6, 9363.8,
9434.5, 9506.4, 9512.0, 9533.5, 9543.3, 9553.1, 9462.1, 9668.6, 9662.2, 9652.9, 9807.8, 9634.4,
9744.6, 9828.3, 9856.3, 9850.8, 9896.6, 9912.3, 9870.3, 10004.6, 9949.7, 9945.0, 10074.7, 9842.7,
9961.1, 10048.7, 10041.0, 10082.1, 10120.8, 10170.8, 10105.8, 10299.5, 10212.4, 10201.6, 10404.3,
10156.1, 10277.0, 10349.2, 10362.9, 10412.0, 10436.3, 10456.8, 10406.4, 10588.8, 10520.5, 10535.0,
10710.1, 10524.9, 10622.9, 10677.4, 10706.2, 10690.3, 10745.0, 10761.9, 10710.4, 10854.5, 10807.4,
10757.3, 10915.6, 10681.0, 10776.7, 10775.2, 10792.7, 10786.8, 10770.9, 10808.8, 10707.3, 10882.1,
10845.2, 10829.2, 11010.9, 10809.9, 10889.2, 10928.9, 10940.1, 10957.4, 11009.3, 11030.5, 10973.8,
11159.4, 11129.0, 11144.5, 11295.0, 11063.7, 11146.2, 11217.0, 11186.5, 11196.2, 11221.3, 11227.5,
11130.7, 11321.2, 11274.0, 11240.6, 11354.8, 11159.0, 11236.2, 11332.4, 11328.3, 11389.0, 11350.6,
11363.7, 11259.8, 11452.6, 11401.9, 11375.0, 11518.4, 11304.0, 11424.3, 11436.3, 11482.2, 11495.6,
11497.8, 11486, 11369, 11547, 11499, 11472, 11571, 11354, 11493, 11562, 11589, 11595, 11602, 11590,
11622, 11593
),
index = Time
) |>
mutate(
Month = month(Time, label = TRUE),
Year = year(Time)
) |>
select(Time, Month, Year, Employed)
```
\fontsize{10}{10}\sf
```{r abs2}
employed
```
## The ABS stuff-up
```{r abs3}
employed |>
autoplot(Employed) +
labs(title = "Total employed", y = "Thousands")
```
## The ABS stuff-up
```{r abs4}
employed |>
filter(Year >= 2005) |>
autoplot(Employed) +
labs(title = "Total employed", y = "Thousands")
```
## The ABS stuff-up
```{r abs5}
employed |>
filter(Year >= 2005) |>
gg_season(Employed, labels = "right") +
labs(title = "Total employed", y = "Thousands")
```
## The ABS stuff-up
```{r abs6, fig.height=2}
employed |>
mutate(diff = difference(Employed)) |>
filter(Month == "Sep") |>
ggplot(aes(y = diff, x = 1)) +
geom_boxplot() +
coord_flip() +
labs(title = "Sep - Aug: total employed", y = "Thousands") +
scale_x_continuous(breaks = NULL, labels = NULL)
```
## The ABS stuff-up
```{r abs7}
dcmp <- employed |>
filter(Year >= 2005) |>
model(stl = STL(Employed ~ season(window = 11), robust = TRUE))
components(dcmp) |> autoplot()
```
## The ABS stuff-up
```{r abs8}
components(dcmp) |>
filter(year(Time) == 2013) |>
gg_season(season_year) +
labs(title = "Seasonal component") + guides(colour = "none")
```
## The ABS stuff-up
```{r abs9}
components(dcmp) |>
as_tsibble() |>
autoplot(season_adjust)
```
## The ABS stuff-up
\fontsize{13}{15}\sf
* August 2014 employment numbers higher than expected.
* Supplementary survey usually conducted in August for employed people.
* Most likely, some employed people were claiming to be unemployed in August to avoid supplementary questions.
* Supplementary survey not run in 2014, so no motivation to lie about employment.
* In previous years, seasonal adjustment fixed the problem.
* The ABS has now adopted a new method to avoid the bias.