-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathruby_fit.py
156 lines (128 loc) · 3.68 KB
/
ruby_fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""Created on Mon May 13 16:59:05 2019
@author: Hezy
"""
import glob
import matplotlib.pyplot as plt
import numpy as np
from pandas import read_csv
from scipy.optimize import curve_fit
def lorentz(x, wL):
# Lorentz with max=1 and w=FWHM:
gamma = wL
return 1 / (1 + np.square(x / gamma))
def gauss(x, wG):
# Gauss with max=1 and w=FWHM
sigma = wG / np.sqrt(2 * np.log(2))
return np.exp(-(x**2) / (2 * sigma**2))
def pseudo_voigt(x, x0, w, n, a):
# pseudo-voigt with max=1 and w=FWHM:
return a * (n * gauss((x - x0), w) + (1 - n) * lorentz((x - x0), w))
def background(x, b0, b1, b2):
return b0 + b1 * x + b2 * x**2
def ruby(x, x1, w1, n1, a1, x2, w2, n2, a2, b0, b1, b2):
return (
background(x, b0, b1, b2)
+ pseudo_voigt(x, x1, w1, n1, a1)
+ pseudo_voigt(x, x2, w2, n2, a2)
)
def pressure(wl):
A = 1904.0
B = 7.665
wl0 = 693.516
return A / B * (((wl - wl0) / wl0 + 1) ** B - 1)
# Genral figure preperation
plt.close("all")
# plt.rc('font',**{'family':'sans-serif','sans-serif':['DejaVu Sans']})
plt.rc("text", usetex=False)
plt.rc("xtick", labelsize=14)
plt.rc("ytick", labelsize=14)
# read data from csv file
files = glob.glob("./*.txt")
for file in sorted(files):
data = read_csv(
file, skiprows=5, header=None, sep="\t", lineterminator="\n"
)
x = data.iloc[:, 0]
y = data.iloc[:, 1]
guess = data.loc[data[1].idxmax()]
h_guess2 = guess[1]
h_guess1 = h_guess2 * 0.6
wl_guess2 = guess[0]
wl_guess1 = wl_guess2 - 1.58
popt, pcov = curve_fit(
ruby,
x,
y,
p0=(
wl_guess1,
0.62,
0.5,
h_guess1,
wl_guess2,
0.696,
0.5,
h_guess2,
0,
0,
0,
),
bounds=(
(
650,
0.01,
0.01,
0.01,
650,
0.01,
0.01,
0.01,
-np.inf,
-np.inf,
-np.inf,
),
(
720,
30,
1,
+np.inf,
720,
30,
1,
+np.inf,
+np.inf,
+np.inf,
+np.inf,
),
),
)
perr = np.sqrt(np.diag(pcov))
# print(popt)
# print(pcov)
yfit = ruby(x, *popt)
ydif = yfit - y
# create figure
title = "Pressure measurement by ruby luminescence"
lamb = "%s" % float("%.6g" % popt[4])
press = "%s" % float("%.4g" % pressure(popt[4]))
subtitle = "$ \\lambda $ = " + lamb + " nm , P = " + press + " GPa"
plt.figure(figsize=(11.7, 8.3), dpi=144)
plt.suptitle(title, y=0.98, fontsize=20)
plt.title(subtitle, y=1, fontsize=20)
plt.plot(x, y - background(x, *popt[8:11]), ".", label="experiment")
plt.plot(x, yfit - background(x, *popt[8:11]), "-", label="fit")
# plt.plot(x, background(x, *popt[8:11]),
# label='background')
# plt.plot(x, background(x, *popt[8:11]) + pseudo_voigt(x, *popt[0:4]),
# label='peak 1')
# plt.plot(x, background(x, *popt[8:11]) + pseudo_voigt(x, *popt[4:8]),
# label='peak 2')
plt.plot(x, ydif, "-", label="residual")
# arange figure
plt.grid(True)
plt.minorticks_on()
plt.legend(loc="best")
plt.xlabel("wavelength (nm)", fontsize=18)
plt.ylabel("intesity (arb.)", fontsize=18)
plt.figtext(0.15, 0.15, file, ha="left", va="center")
plt.savefig(file.strip(".\\").strip("/").strip(".txt"))
plt.show()