-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexample.py
50 lines (33 loc) · 1.33 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import TOLP as tolp
from multiprocessing import Pool
path = r"community_label_TSBM//"
data_name = "fake110"
def completely_unobserved_data(name):
edges_orig = []
data_length = 8
for i in range(1,data_length):
edges_orig.append(np.loadtxt(path+name+"/"+ name+"_{}.txt".format(i)))
lstm = np.load(path+name+"/"+ name+".npy")
target_layer = edges_orig[6]
edges_orig = edges_orig[0:6]
predict_num = 3
auprc, auc, precision, recall, featim, feats = tolp.topol_stacking_temporal_with_edgelist(edges_orig, target_layer, predict_num,name)
print("This is the Revision 1 AUC score")
print(auc)
completely_unobserved_data(data_name)
def partially_observed_data(name):
edges_orig = []
data_length = 8
for i in range(1,data_length):
edges_orig.append(np.loadtxt(path+name+"/"+ name+"_{}.txt".format(i)))
lstm = np.load(path+name+"/"+ name+".npy")
target_layer = edges_orig[6]
edges_orig = edges_orig[0:6]
predict_num = 3
auprc, auc, precision, recall, featim, feats = tolp.topol_stacking_temporal_partial(edges_orig, target_layer, predict_num,name)
print("This is the Revision 1 AUC score")
print(auc)
return auc
# replace `data_name` with your desired dataset, e.g. fake111.
partially_observed_data(data_name)