-
Notifications
You must be signed in to change notification settings - Fork 1
/
pipeline.py
178 lines (143 loc) · 6.34 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import collections
import json
import pandas as pd
import argparse
import re
import string
import gzip
import os
import torch
import csv
import pickle
import faiss
import numpy as np
from transformers import pipeline
from optimum.onnxruntime import ORTModelForQuestionAnswering
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from optimum.onnxruntime.configuration import AutoQuantizationConfig
from optimum.onnxruntime import ORTQuantizer
from sentence_transformers import SentenceTransformer
class Retriever:
def __init__(self,
retriever_model="sentence-transformers/all-MiniLM-L12-v2",
embedding_size = 384,
use_cuda = False,
retriever_type = "single",
indexing = faiss):
self.model = SentenceTransformer(retriever_model)
self.index_type = indexing
self.embedding_size = embedding_size
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
self.retriever_type = retriever_type
self.index = None
def __call__(self, corpus, n_clusters = 4, n_probe = 3):
corpus_json = json.loads(pd.read_csv(corpus).to_json(orient="records"))
passages = []
for row in corpus_json :
passages.append(row['paragraph'])
# Setup Faiss
length_passages = len(passages)
n_clusters = min(length_passages,int(8*length_passages**0.5))
n_probe = min(3,length_passages)
#We use Inner Product (dot-product) as Index. We will normalize our vectors to unit length, then is Inner Product equal to cosine similarity
quantizer = self.index_type.IndexFlatIP(self.embedding_size)
index = self.index_type.IndexIVFFlat(quantizer, self.embedding_size, n_clusters, faiss.METRIC_INNER_PRODUCT)
index.nprobe = n_probe
if self.retriever_type is "single":
corpus_embeddings = self.model.encode(passages, convert_to_numpy=True, show_progress_bar=True)
### Create the FAISS index
print("Start creating FAISS index")
# First, we need to normalize vectors to unit length
corpus_embeddings = corpus_embeddings/ np.linalg.norm(corpus_embeddings, axis=1)[:, None]
# # Then we train the index to find a suitable clustering
index.train(corpus_embeddings)
# # Finally we add all embeddings to the index
index.add(corpus_embeddings)
self.index = index
return index
def question_encode(self,question):
question_embeddings = self.model.encode(question)
question_embeddings = question_embeddings / np.linalg.norm(question_embeddings)
question_embeddings = np.expand_dims(question_embeddings, axis=0)
return question_embeddings
def search(self,question_embedding, top_k = 5):
distances, corpus_ids = self.index.search(question_embedding, top_k)
return distances, corpus_ids
class Reader:
def __init__(self,
reader_model="mrm8488/bert-mini-5-finetuned-squadv2",
theme = None,
theme_dict = None,
use_cuda = False,):
self.theme = theme
self.tokenizer_path = reader_model
if self.theme is None:
self.model_name = reader_model
else:
file = open(theme_dict, 'rb')
# dump information to that file
data = pickle.load(file)
# close the file
file.close()
self.model_name = data[theme]
self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
self.pipe = None
def __call__(self, stride = 128, n_best_size=20, file_name = "model_quantized.onnx", save_directory= "tmp/onnx/"):
reader_model = AutoModelForQuestionAnswering.from_pretrained(self.model_name) #from from_transformers=True
tokenizer = AutoTokenizer.from_pretrained(save_directory)
self.pipe = pipeline("question-answering",
model=reader_model,
tokenizer=tokenizer,
truncation= "only_second",
stride=stride,
padding="max_length",
n_best_size = n_best_size)
return self.pipe
def quantize_model(self, save_directory= "tmp/onnx/"):
if self.theme is None:
# Load a model from transformers and export it to ONNX
ort_model = ORTModelForQuestionAnswering.from_pretrained(self.model_name, from_transformers=True)
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
else:
# Load a model from transformers and export it to ONNX
ort_model = ORTModelForQuestionAnswering.from_pretrained(self.model_name, from_transformers=True)
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_path)
# Save the onnx model and tokenizer
ort_model.save_pretrained(save_directory)
tokenizer.save_pretrained(save_directory)
qconfig = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
quantizer = ORTQuantizer.from_pretrained(ort_model)
# Apply dynamic quantization on the model
quantizer.quantize(save_dir=save_directory, quantization_config=qconfig)
def read(self, question, passages, corpus_ids, distances, top_k_hits=3):
# We extract corpus ids and scores for the each query
hits = [{'corpus_id': id, 'score': score} for id, score in zip(corpus_ids[0], distances[0])]
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
ans = {}
ans["paragraph_id"]=-1
ans["answers"]=""
ans["question_id"] = question["id"]
outputs=[]
pred_out = []
for hit in hits[0:top_k_hits] :
# print(hit["corpus_id"])
if hit['corpus_id'] != -1:
# print("inside")
context=passages[hit['corpus_id']]
output = self.pipe(question=question["question"], context=context, handle_impossible_answer= True)
if output["score"] > 0.5 and output["answer"]:
outputs.append({
"score" : output["score"],
"answer" : {
"question_id" : question["id"],
"paragraph_id" : hit["corpus_id"]+1,
"answers" : output["answer"]
}
})
if output["score"] > 0.7 and output["answer"]:
break
outputs = sorted(outputs, key=lambda x: -x['score'])
if not outputs:
return ans
else:
return outputs[0]["answer"]