The markdown document is a reproduction description of the paper "Data Aggregation Point Placement for Smart Meters in the Smart Grid"
Symbol | Description |
---|---|
Total number of SMs | |
Total number of poles | |
Index of SMs, |
|
Index of poles, |
|
Index of starting devices of the data link, |
|
Index of ending devices of the data link, |
|
$\left{\begin{matrix} 1, if\ pole\ p\ is\ selected\ to\ place\ a\ DAP \ 0, otherwise \end{matrix}\right.$ | |
$\left{\begin{matrix} 1, if\ devive\ i\ sends\ data\ to\ device\ j\ belonging\ to\ the\ routing\ with\ start\ point\ SM\ s\ and\ end\ point\ pole\ p \ 0, otherwise \end{matrix}\right.$ | |
$\left{\begin{matrix} 1, if\ pole\ p\ is\ selected\ to\ place\ a\ DAP\ and\ SM\ s\ sends\ data\ to\ DAP\ p \ 0, otherwise \end{matrix}\right.$ | |
Installation cost | |
Transmission cost | |
Delay cost | |
Maximal number of SMs per DAP | |
Maximal number of SMs per relay SM | |
Distance between SM i and relay SM j or DAP j | |
Maximal transmission range |
-
$C_{inst}=a\sum_{p}x_{p} \tag{2}$ $a$ is the purchasing and mounting cost for each DAP
the total installation cost is proportional to the number of DAPs -
$C_{trans}=b\sum_{s,p,i,j} y^{sp}{ij}*PL(d{ij}) \tag{3}$
$b=g8M \gamma E_{b} \kappa T_{m}/T_{I}$ , the transmission cost for one SM per unit path loss-
$T_{I}$ , the time interval between the transmissions -
$T_{m}$ , the assumed lifetime of the network -
$g$ , the energy price -
$\gamma$ , the ratio of the total power consumption in the model and the power consumed for transmission $E_{b}, the required received energy per bit$ -
$\kappa$ , the fading margin -
$M$ , the packet size in bytes -
$PL(d_{ij})$ , the expected path loss over distance$d_{ij}$ - given in real values:
$PL(d_{ij})=PL_{d_{0}}*(d_{ij}/d_{0})^\alpha \tag{4}$ - given in dB: $PL(d_{ij}){dB}=PL(d{0}){dB}+10 \alpha log{10}(d_{ij}/d_{0}) \tag{5}$
-
$\alpha$ : the path-loss exponent - subscript
$_{dB}$ indicating a value in dB - $PL(d_{0}){dB}$: the mean path loss at the reference distance $d{0}$, given as $PL(d_{0}){dB}=20log{10}(4\pi d_{0} f/c) \tag{6}$
-
$f$ : the transmission frequency -
$c$ : the speed of light
-
- given in real values:
-
-
$C_{dly}=c \sum^{N_{SM}}{s=1} \sum^{N{P}}{p=1} \sum^{N{SM}}{i=1} \sum^{N{P}}{j=1,j\not=p} y^{sp}{ij} \tag{7}$
In order to get a low latency network, minimize the delay related to 1.the routing operation, 2.data queuing at a wireless node
- To minimize the delay related to the routing operation:
- define an appropriate delay cost
- the delay cost is a penalty on the number of hops of the path that connects the sender SM to its corresponding DAP, which includes connections between SMs and a direct connection from an SM to a DAP
- To minimize the delay related to data queuing at a wireless node:
- impose constraints on the maximal number of SMs that can connect to a relay SM
-
$c$ :- a weight parameter, translate the communication delay into a monetary loss
- set
$c$ 500 or 1000 -> hard constraint -> no connection between two SMs
- The delay loss caused by the direct connection of SMs to DAPs is not considered
- To minimize the delay related to the routing operation:
-
In Fig,
$s \in \{1, 2\}, p \in \{1\}, i \in \{1,2\}, j \in \{1,2,3\}$ -
$z^{sp} \leq x_{p},\forall s,p \tag{8}$ -
$\sum^{N_{P}}_{p=1}z^{sp}=1,\forall s \tag{9}$ -
$y^{sp}_{ij} \leq z^{sp},\forall s,p,i,j \tag{10}$ - $\sum^{N_{p}+N_{SM}}{j=1}y^{sp}{sj}=z^{sp},\forall s,p \tag{11}$
- $\sum^{N_{SM}}{i=1}y^{sp}{ip}=z^{sp},\forall s,p \tag{12}$
- $\sum^{N_{P}+N_{SM}}{j=1}y^{sp}{ij}=\sum^{N_{SM}}{j=1}y^{sp}{j(i+N_{P})},\forall s,\forall p,\forall i,i \not=s \tag{13}$
- $d_{ij}y^{sp}{ij} \leq d{max},\forall s,p,i,j \tag{14}$
- $\sum^{N_{SM}}{s=1}z^{sp} \leq N^{max}{SP},\forall p \tag{15}$
- $\sum^{N_{SM}}{s=1}\sum^{N{P}}{p=1}\sum^{N{SM}}{i=1}y^{sp}{ij} \leq N^{max}{SS},\forall j=N{p}+\ 1,...,N_{SM} \tag{16}$
-
$x_{p},y^{sp}_{ij},z^{sp} \in {0,1}, \forall s,p,i,j \tag{17}$
-
-
Summary $\underset {x_{p},y^{sp}{ij},z^{sp}}{min}c{total}, s.t. (1)-(16) \tag{*}$
$$
\begin{array}{|c|c|c|}
\hline
{Distance\ metrics} & {Define} & {Remarks} \
\hline
{euclidean\ distance} & {d_{euclidean}(i,j)=d_{ij}} & {distance\ between\ SM\ i\ and\ relay\ SM\ j\ or\ DAP\ j} \
\hline
{cutoff\ distance} & {
d_{cutoff}(i,j)=
\left{
\begin{aligned}
d_{ij},if d_{ij} \leq d_{max} \
Md_{ij}, otherwise
\end{aligned}
\right.
} & {clusters\ are\ formed\ such\ that\ it\ directly\ satisfies\ the\ maximal
transmission\ range\ constraint}\
\hline
{energy-based distance} & {d_{energy}(i,j)}=bPL(d_{ij}) & {favor\ clusters\ that\ directly\ minimize\ the\ transmission\ cost\ bPL(d_{ij})}\
\hline
{energy-based cutoff distance} & {
d_{cutoff-energy}(i,j)=
\left{
\begin{aligned}
bPL(d_{ij}),if d_{ij} \leq d_{max} \
MbPL(d_{ij}),otherwise
\end{aligned}
\right.
} & {a\ combination\ of\ the\ last\ two\ distances \ favor\ clusters\ minimizing\ the\ transmission\ cost\ while
including\ SMs\ that\ are\ closer\ than\ d_{max}}\
\hline
\end{array}
$$
$M$ is a very large number
Suppose that the cluster centers lie in the set
Define a bipartite graph
The optimal routing is determined with the goal to minimize the costs