Skip to content

Latest commit

 

History

History
134 lines (129 loc) · 6.42 KB

DAPplace.md

File metadata and controls

134 lines (129 loc) · 6.42 KB

README

The markdown document is a reproduction description of the paper "Data Aggregation Point Placement for Smart Meters in the Smart Grid"


Problem Formulation

Variables defintions
Symbol Description
$N_{SM}$ Total number of SMs
$N_{poles}$ Total number of poles
$s$ Index of SMs, $\forall s \in {1,...,N_{SM}}$
$p$ Index of poles, $\forall p \in {1,...,N_{P}}$
$i$ Index of starting devices of the data link, $\forall i \in {1,...,N_{SM}}$
$j$ Index of ending devices of the data link, $\forall j \in {1,...,N_{P}+N_{SM}}$. Device $j \in {1,...,N_{P}}$ represents a pole, while device $j \in {N_{P}+1,...,N_{P}+N_{SM}}$ represents a SM
$x_{p}$ $\left{\begin{matrix} 1, if\ pole\ p\ is\ selected\ to\ place\ a\ DAP \ 0, otherwise \end{matrix}\right.$
$y^{sp}_{ij}$ $\left{\begin{matrix} 1, if\ devive\ i\ sends\ data\ to\ device\ j\ belonging\ to\ the\ routing\ with\ start\ point\ SM\ s\ and\ end\ point\ pole\ p \ 0, otherwise \end{matrix}\right.$
$z^{sp}$ $\left{\begin{matrix} 1, if\ pole\ p\ is\ selected\ to\ place\ a\ DAP\ and\ SM\ s\ sends\ data\ to\ DAP\ p \ 0, otherwise \end{matrix}\right.$
$C_{inst}$ Installation cost
$C_{trans}$ Transmission cost
$C_{dly}$ Delay cost
$N^{max}_{SP}$ Maximal number of SMs per DAP
$N^{max}_{SS}$ Maximal number of SMs per relay SM
$d_{ij}$ Distance between SM i and relay SM j or DAP j
$d_{max}$ Maximal transmission range
Problem Formulation
  • view
  • Objective Function
    The objective function to minimize is the sum of these costs:
$C_{total}=C_{inst}+C_{trans}+C_{dly} \tag{1}$  
  • $C_{inst}=a\sum_{p}x_{p} \tag{2}$ $a$ is the purchasing and mounting cost for each DAP
    the total installation cost is proportional to the number of DAPs

  • $C_{trans}=b\sum_{s,p,i,j} y^{sp}{ij}*PL(d{ij}) \tag{3}$
    $b=g8M \gamma E_{b} \kappa T_{m}/T_{I}$, the transmission cost for one SM per unit path loss

    • $T_{I}$, the time interval between the transmissions
    • $T_{m}$, the assumed lifetime of the network
    • $g$, the energy price
    • $\gamma$, the ratio of the total power consumption in the model and the power consumed for transmission
    • $E_{b}, the required received energy per bit$
    • $\kappa$, the fading margin
    • $M$, the packet size in bytes
    • $PL(d_{ij})$, the expected path loss over distance $d_{ij}$
      • given in real values: $PL(d_{ij})=PL_{d_{0}}*(d_{ij}/d_{0})^\alpha \tag{4}$
      • given in dB: $PL(d_{ij}){dB}=PL(d{0}){dB}+10 \alpha log{10}(d_{ij}/d_{0}) \tag{5}$
      • $\alpha$: the path-loss exponent
      • subscript $_{dB}$ indicating a value in dB
      • $PL(d_{0}){dB}$: the mean path loss at the reference distance $d{0}$, given as $PL(d_{0}){dB}=20log{10}(4\pi d_{0} f/c) \tag{6}$
        • $f$: the transmission frequency
        • $c$: the speed of light
  • $C_{dly}=c \sum^{N_{SM}}{s=1} \sum^{N{P}}{p=1} \sum^{N{SM}}{i=1} \sum^{N{P}}{j=1,j\not=p} y^{sp}{ij} \tag{7}$

    In order to get a low latency network, minimize the delay related to 1.the routing operation, 2.data queuing at a wireless node

    • To minimize the delay related to the routing operation:
      • define an appropriate delay cost
      • the delay cost is a penalty on the number of hops of the path that connects the sender SM to its corresponding DAP, which includes connections between SMs and a direct connection from an SM to a DAP
    • To minimize the delay related to data queuing at a wireless node:
      • impose constraints on the maximal number of SMs that can connect to a relay SM
    • $c$:
      • a weight parameter, translate the communication delay into a monetary loss
      • set $c$ 500 or 1000 -> hard constraint -> no connection between two SMs
    • The delay loss caused by the direct connection of SMs to DAPs is not considered
  • Constraints

    In Fig, $s \in \{1, 2\}, p \in \{1\}, i \in \{1,2\}, j \in \{1,2,3\}$
    • $z^{sp} \leq x_{p},\forall s,p \tag{8}$  
    • $\sum^{N_{P}}_{p=1}z^{sp}=1,\forall s \tag{9}$  
    • $y^{sp}_{ij} \leq z^{sp},\forall s,p,i,j \tag{10}$  
    • $\sum^{N_{p}+N_{SM}}{j=1}y^{sp}{sj}=z^{sp},\forall s,p \tag{11}$  
    • $\sum^{N_{SM}}{i=1}y^{sp}{ip}=z^{sp},\forall s,p \tag{12}$  
    • $\sum^{N_{P}+N_{SM}}{j=1}y^{sp}{ij}=\sum^{N_{SM}}{j=1}y^{sp}{j(i+N_{P})},\forall s,\forall p,\forall i,i \not=s \tag{13}$  
    • $d_{ij}y^{sp}{ij} \leq d{max},\forall s,p,i,j \tag{14}$  
    • $\sum^{N_{SM}}{s=1}z^{sp} \leq N^{max}{SP},\forall p \tag{15}$  
    • $\sum^{N_{SM}}{s=1}\sum^{N{P}}{p=1}\sum^{N{SM}}{i=1}y^{sp}{ij} \leq N^{max}{SS},\forall j=N{p}+\ 1,...,N_{SM} \tag{16}$  
    • $x_{p},y^{sp}_{ij},z^{sp} \in {0,1}, \forall s,p,i,j \tag{17}$  
  • Summary $\underset {x_{p},y^{sp}{ij},z^{sp}}{min}c{total}, s.t. (1)-(16) \tag{*}$


Heuristic approach

1. Clustering Approximation

$$ \begin{array}{|c|c|c|} \hline {Distance\ metrics} & {Define} & {Remarks} \ \hline {euclidean\ distance} & {d_{euclidean}(i,j)=d_{ij}} & {distance\ between\ SM\ i\ and\ relay\ SM\ j\ or\ DAP\ j} \ \hline {cutoff\ distance} & { d_{cutoff}(i,j)= \left{ \begin{aligned} d_{ij},if d_{ij} \leq d_{max} \ Md_{ij}, otherwise \end{aligned} \right. } & {clusters\ are\ formed\ such\ that\ it\ directly\ satisfies\ the\ maximal
transmission\ range\ constraint}\ \hline {energy-based distance} & {d_{energy}(i,j)}=b
PL(d_{ij}) & {favor\ clusters\ that\ directly\ minimize\ the\ transmission\ cost\ bPL(d_{ij})}\ \hline {energy-based cutoff distance} & { d_{cutoff-energy}(i,j)= \left{ \begin{aligned} bPL(d_{ij}),if d_{ij} \leq d_{max} \ MbPL(d_{ij}),otherwise \end{aligned} \right. } & {a\ combination\ of\ the\ last\ two\ distances \ favor\ clusters\ minimizing\ the\ transmission\ cost\ while
including\ SMs\ that\ are\ closer\ than\ d_{max}}\ \hline \end{array} $$

$M$ is a very large number

2. Pole Assignment

Suppose that the cluster centers lie in the set $c \in C$, and the candidate pole positions lie in the set $p \in P$. The cost of assigning $c$ to $p$ is defined as the weight $w_{cp} = d_{cp}$.
Define a bipartite graph $G^{'}=(C,P,E^{'})$, the edges $e^{'}=(c,p) \in E^{'}$ connect every pair $(c,p)$ and have a weight $w_{cp}$.

3. Optimal Routing

The optimal routing is determined with the goal to minimize the costs $c_{trans}$ and $c_{dly}$.