forked from jatinshah/ufldl_tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoftmax_exercise.py
98 lines (80 loc) · 3.56 KB
/
softmax_exercise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import load_MNIST
import numpy as np
import softmax
import gradient
##======================================================================
## STEP 0: Initialise constants and parameters
#
# Here we define and initialise some constants which allow your code
# to be used more generally on any arbitrary input.
# We also initialise some parameters used for tuning the model.
# Size of input vector (MNIST images are 28x28)
input_size = 28 * 28
# Number of classes (MNIST images fall into 10 classes)
num_classes = 10
# Weight decay parameter
lambda_ = 1e-4
# Debug
debug = False
##======================================================================
## STEP 1: Load data
#
# In this section, we load the input and output data.
# For softmax regression on MNIST pixels,
# the input data is the images, and
# the output data is the labels.
#
# Change the filenames if you've saved the files under different names
# On some platforms, the files might be saved as
# train-images.idx3-ubyte / train-labels.idx1-ubyte
images = load_MNIST.load_MNIST_images('data/mnist/train-images-idx3-ubyte')
labels = load_MNIST.load_MNIST_labels('data/mnist/train-labels-idx1-ubyte')
if debug:
input_size = 8 * 8
input_data = np.random.randn(input_size, 100)
labels = np.random.randint(num_classes, size=100)
else:
input_size = 28 * 28
input_data = images
# Randomly initialise theta
theta = 0.005 * np.random.randn(num_classes * input_size)
##======================================================================
## STEP 2: Implement softmaxCost
#
# Implement softmaxCost in softmaxCost.m.
(cost, grad) = softmax.softmax_cost(theta, num_classes, input_size, lambda_, input_data, labels)
##======================================================================
## STEP 3: Gradient checking
#
# As with any learning algorithm, you should always check that your
# gradients are correct before learning the parameters.
#
if debug:
J = lambda x: softmax.softmax_cost(x, num_classes, input_size, lambda_, input_data, labels)
num_grad = gradient.compute_gradient(J, theta)
# Use this to visually compare the gradients side by side
print num_grad, grad
# Compare numerically computed gradients with the ones obtained from backpropagation
diff = np.linalg.norm(num_grad - grad) / np.linalg.norm(num_grad + grad)
print diff
print "Norm of the difference between numerical and analytical num_grad (should be < 1e-7)\n\n"
##======================================================================
## STEP 4: Learning parameters
#
# Once you have verified that your gradients are correct,
# you can start training your softmax regression code using softmaxTrain
# (which uses minFunc).
options_ = {'maxiter': 100, 'disp': True}
opt_theta, input_size, num_classes = softmax.softmax_train(input_size, num_classes,
lambda_, input_data, labels, options_)
##======================================================================
## STEP 5: Testing
#
# You should now test your model against the test images.
# To do this, you will first need to write softmaxPredict
# (in softmaxPredict.m), which should return predictions
# given a softmax model and the input data.
test_images = load_MNIST.load_MNIST_images('data/mnist/t10k-images.idx3-ubyte')
test_labels = load_MNIST.load_MNIST_labels('data/mnist/t10k-labels.idx1-ubyte')
predictions = softmax.softmax_predict((opt_theta, input_size, num_classes), test_images)
print "Accuracy: {0:.2f}%".format(100 * np.sum(predictions == test_labels, dtype=np.float64) / test_labels.shape[0])