-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsnake_play.py
50 lines (32 loc) · 945 Bytes
/
snake_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pygame
import pygame.freetype
from objects import SnakeWorld, get_action
import numpy as np
from qagent import QNet
import torch
SCREEN_WIDTH_IN_SQUARES = 10
SCREEN_HEIGHT_IN_SQUARES = 10
# NN
#num_inputs = env.observation_space.shape[0]
num_inputs = 1200
num_actions = 3
print('state size:', num_inputs)
print('action size:', num_actions)
target_net = QNet(num_inputs, num_actions)
target_net.load(1)
steps = 0
game_over = False
world = SnakeWorld(SCREEN_WIDTH_IN_SQUARES, SCREEN_HEIGHT_IN_SQUARES)
#world.reinitialise()
game_over = False
score = 0
state = torch.Tensor(world.state)
state = state.unsqueeze(0).unsqueeze(0)
while not game_over:
steps += 1
dir = get_action(state, target_net, epsilon=0.01)
next_state, game_over, _, reward = world.step(dir)
next_state = torch.Tensor(next_state)
next_state = next_state.unsqueeze(0).unsqueeze(0)
state = next_state
world.render_mpl(size=5, fps=1)