forked from acrosson/nlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopic_modeling.py
60 lines (44 loc) · 1.65 KB
/
topic_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import re
import random
import nltk
from nltk.corpus import stopwords
from gensim import corpora, models
stop = stopwords.words('english')
add_stopwords = ['said', 'mln', 'billion', 'million', 'pct', 'would', 'inc', 'company', 'corp']
stop += add_stopwords
def ie_preprocess(document):
document = re.sub('[^A-Za-z ]+', '', document)
document = ' '.join([i for i in document.lower().split()
if i not in stop])
document = nltk.word_tokenize(document)
return document
def remove_infrequent_words(docs):
"""Remove all the words that only occur once"""
from collections import defaultdict
frequency = defaultdict(int)
for doc in docs:
for token in doc:
frequency[token] += 1
docs = [[token for token in doc if frequency[token] > 1]
for doc in docs]
return docs
def run():
"""Import the Reuters Corpus which contains 10,788 news articles"""
from nltk.corpus import reuters
raw_docs = [reuters.raw(fileid) for fileid in reuters.fileids()]
# Select 100 documents randomly
rand_idx = random.sample(range(len(raw_docs)), 100)
raw_docs = [raw_docs[i] for i in rand_idx]
# Preprocess Documents
tokenized_docs = [ie_preprocess(doc) for doc in raw_docs]
# Remove single occurance words
docs = remove_infrequent_words(tokenized_docs)
# Create dictionary and corpus
dictionary = corpora.Dictionary(docs)
corpus = [dictionary.doc2bow(doc) for doc in docs]
# Build LDA model
lda = models.LdaModel(corpus, id2word=dictionary, num_topics=10)
for topic in lda.show_topics():
print topic
if __name__ == '__main__':
run()