forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyb_can.c
1090 lines (990 loc) · 43 KB
/
pyb_can.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2014-2018 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "py/objarray.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/binary.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "bufhelper.h"
#include "can.h"
#include "irq.h"
#if MICROPY_HW_ENABLE_CAN
#if MICROPY_HW_ENABLE_FDCAN
#define CAN_MAX_DATA_FRAME (64)
#define CAN_FIFO0 FDCAN_RX_FIFO0
#define CAN_FIFO1 FDCAN_RX_FIFO1
#define CAN_FILTER_FIFO0 (0)
// Default timings; 125Kbps
#if defined(STM32G4)
// assuming 24MHz clock
#define CAN_DEFAULT_PRESCALER (16)
#else
// assuming 48MHz clock
#define CAN_DEFAULT_PRESCALER (32)
#endif
#define CAN_DEFAULT_SJW (1)
#define CAN_DEFAULT_BS1 (8)
#define CAN_DEFAULT_BS2 (3)
#define CAN_MAXIMUM_NBRP (512)
#define CAN_MAXIMUM_NBS1 (256)
#define CAN_MAXIMUM_NBS2 (128)
// Minimum Nominal time segment for FDCAN is 2.
#define CAN_MINIMUM_TSEG (2)
#define CAN_MAXIMUM_DBRP (32)
#define CAN_MAXIMUM_DBS1 (32)
#define CAN_MAXIMUM_DBS2 (16)
#define CAN_MODE_NORMAL FDCAN_MODE_NORMAL
#define CAN_MODE_LOOPBACK FDCAN_MODE_EXTERNAL_LOOPBACK
#define CAN_MODE_SILENT FDCAN_MODE_BUS_MONITORING
#define CAN_MODE_SILENT_LOOPBACK FDCAN_MODE_INTERNAL_LOOPBACK
#define CAN1_RX0_IRQn FDCAN1_IT0_IRQn
#define CAN1_RX1_IRQn FDCAN1_IT1_IRQn
#if defined(CAN2)
#define CAN2_RX0_IRQn FDCAN2_IT0_IRQn
#define CAN2_RX1_IRQn FDCAN2_IT1_IRQn
#endif
#define CAN_IT_FIFO0_FULL FDCAN_IT_RX_FIFO0_FULL
#define CAN_IT_FIFO1_FULL FDCAN_IT_RX_FIFO1_FULL
#define CAN_IT_FIFO0_OVRF FDCAN_IT_RX_FIFO0_MESSAGE_LOST
#define CAN_IT_FIFO1_OVRF FDCAN_IT_RX_FIFO1_MESSAGE_LOST
#define CAN_IT_FIFO0_PENDING FDCAN_IT_RX_FIFO0_NEW_MESSAGE
#define CAN_IT_FIFO1_PENDING FDCAN_IT_RX_FIFO1_NEW_MESSAGE
#define CAN_FLAG_FIFO0_FULL FDCAN_FLAG_RX_FIFO0_FULL
#define CAN_FLAG_FIFO1_FULL FDCAN_FLAG_RX_FIFO1_FULL
#define CAN_FLAG_FIFO0_OVRF FDCAN_FLAG_RX_FIFO0_MESSAGE_LOST
#define CAN_FLAG_FIFO1_OVRF FDCAN_FLAG_RX_FIFO1_MESSAGE_LOST
#define __HAL_CAN_ENABLE_IT __HAL_FDCAN_ENABLE_IT
#define __HAL_CAN_DISABLE_IT __HAL_FDCAN_DISABLE_IT
#define __HAL_CAN_CLEAR_FLAG __HAL_FDCAN_CLEAR_FLAG
#define __HAL_CAN_MSG_PENDING HAL_FDCAN_GetRxFifoFillLevel
extern const uint8_t DLCtoBytes[16];
#else
#define CAN_MAX_FILTER (28)
#define CAN_MAX_DATA_FRAME (8)
#define CAN_DEFAULT_PRESCALER (100)
#define CAN_DEFAULT_SJW (1)
#define CAN_DEFAULT_BS1 (6)
#define CAN_DEFAULT_BS2 (8)
#define CAN_MAXIMUM_NBRP (1024)
#define CAN_MAXIMUM_NBS1 (16)
#define CAN_MAXIMUM_NBS2 (8)
#define CAN_MINIMUM_TSEG (1)
#define CAN_IT_FIFO0_FULL CAN_IT_FF0
#define CAN_IT_FIFO1_FULL CAN_IT_FF1
#define CAN_IT_FIFO0_OVRF CAN_IT_FOV0
#define CAN_IT_FIFO1_OVRF CAN_IT_FOV1
#define CAN_IT_FIFO0_PENDING CAN_IT_FMP0
#define CAN_IT_FIFO1_PENDING CAN_IT_FMP1
#define CAN_FLAG_FIFO0_FULL CAN_FLAG_FF0
#define CAN_FLAG_FIFO1_FULL CAN_FLAG_FF1
#define CAN_FLAG_FIFO0_OVRF CAN_FLAG_FOV0
#define CAN_FLAG_FIFO1_OVRF CAN_FLAG_FOV1
static uint8_t can2_start_bank = 14;
#endif
static void pyb_can_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_printf(print, "CAN(%u)", self->can_id);
} else {
qstr mode;
switch (self->can.Init.Mode) {
case CAN_MODE_NORMAL:
mode = MP_QSTR_NORMAL;
break;
case CAN_MODE_LOOPBACK:
mode = MP_QSTR_LOOPBACK;
break;
case CAN_MODE_SILENT:
mode = MP_QSTR_SILENT;
break;
case CAN_MODE_SILENT_LOOPBACK:
default:
mode = MP_QSTR_SILENT_LOOPBACK;
break;
}
mp_printf(print, "CAN(%u, CAN.%q, auto_restart=%q)",
self->can_id,
mode,
#if MICROPY_HW_ENABLE_FDCAN
(self->can.Instance->CCCR & FDCAN_CCCR_DAR) ? MP_QSTR_True : MP_QSTR_False
#else
(self->can.Instance->MCR & CAN_MCR_ABOM) ? MP_QSTR_True : MP_QSTR_False
#endif
);
}
}
static uint32_t pyb_can_get_source_freq() {
uint32_t can_kern_clk = 0;
// Find CAN kernel clock
#if defined(STM32H7)
switch (__HAL_RCC_GET_FDCAN_SOURCE()) {
case RCC_FDCANCLKSOURCE_HSE:
can_kern_clk = HSE_VALUE;
break;
case RCC_FDCANCLKSOURCE_PLL: {
PLL1_ClocksTypeDef pll1_clocks;
HAL_RCCEx_GetPLL1ClockFreq(&pll1_clocks);
can_kern_clk = pll1_clocks.PLL1_Q_Frequency;
break;
}
case RCC_FDCANCLKSOURCE_PLL2: {
PLL2_ClocksTypeDef pll2_clocks;
HAL_RCCEx_GetPLL2ClockFreq(&pll2_clocks);
can_kern_clk = pll2_clocks.PLL2_Q_Frequency;
break;
}
}
#elif defined(STM32G4)
// STM32G4 CAN clock from reset is HSE, unchanged by MicroPython
can_kern_clk = HSE_VALUE;
#else // G0, F4, F7 and assume other MCUs too.
// CAN1/CAN2/CAN3 on APB1 use GetPCLK1Freq, alternatively use the following:
// can_kern_clk = ((HSE_VALUE / osc_config.PLL.PLLM ) * osc_config.PLL.PLLN) /
// (osc_config.PLL.PLLQ * clk_init.AHBCLKDivider * clk_init.APB1CLKDivider);
can_kern_clk = HAL_RCC_GetPCLK1Freq();
#endif
return can_kern_clk;
}
static void pyb_can_get_bit_timing(mp_uint_t baudrate, mp_uint_t sample_point,
uint32_t max_brp, uint32_t max_bs1, uint32_t max_bs2, uint32_t min_tseg,
mp_int_t *bs1_out, mp_int_t *bs2_out, mp_int_t *prescaler_out) {
uint32_t can_kern_clk = pyb_can_get_source_freq();
// Calculate CAN bit timing.
for (uint32_t brp = 1; brp < max_brp; brp++) {
for (uint32_t bs1 = min_tseg; bs1 < max_bs1; bs1++) {
for (uint32_t bs2 = min_tseg; bs2 < max_bs2; bs2++) {
if ((baudrate == (can_kern_clk / (brp * (1 + bs1 + bs2)))) &&
((sample_point * 10) == (((1 + bs1) * 1000) / (1 + bs1 + bs2)))) {
*bs1_out = bs1;
*bs2_out = bs2;
*prescaler_out = brp;
return;
}
}
}
}
mp_raise_msg(&mp_type_ValueError, MP_ERROR_TEXT("couldn't match baudrate and sample point"));
}
// init(mode, prescaler=100, *, sjw=1, bs1=6, bs2=8)
static mp_obj_t pyb_can_init_helper(pyb_can_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_mode, ARG_prescaler, ARG_sjw, ARG_bs1, ARG_bs2, ARG_auto_restart, ARG_baudrate, ARG_sample_point,
ARG_num_filter_banks, ARG_brs_prescaler, ARG_brs_sjw, ARG_brs_bs1, ARG_brs_bs2, ARG_brs_baudrate, ARG_brs_sample_point };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_MODE_NORMAL} },
{ MP_QSTR_prescaler, MP_ARG_INT, {.u_int = CAN_DEFAULT_PRESCALER} },
{ MP_QSTR_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_SJW} },
{ MP_QSTR_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS1} },
{ MP_QSTR_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS2} },
{ MP_QSTR_auto_restart, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_sample_point, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 75} }, // 75% sampling point
{ MP_QSTR_num_filter_banks, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 14} },
#if MICROPY_HW_ENABLE_FDCAN
{ MP_QSTR_brs_prescaler, MP_ARG_INT, {.u_int = CAN_DEFAULT_PRESCALER} },
{ MP_QSTR_brs_sjw, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_SJW} },
{ MP_QSTR_brs_bs1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS1} },
{ MP_QSTR_brs_bs2, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = CAN_DEFAULT_BS2} },
{ MP_QSTR_brs_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_brs_sample_point, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }
#endif
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the CAN configuration values
memset(&self->can, 0, sizeof(self->can));
// Calculate CAN nominal bit timing from baudrate if provided
if (args[ARG_baudrate].u_int != 0) {
pyb_can_get_bit_timing(args[ARG_baudrate].u_int, args[ARG_sample_point].u_int,
CAN_MAXIMUM_NBRP, CAN_MAXIMUM_NBS1, CAN_MAXIMUM_NBS2, CAN_MINIMUM_TSEG,
&args[ARG_bs1].u_int, &args[ARG_bs2].u_int, &args[ARG_prescaler].u_int);
}
#if MICROPY_HW_ENABLE_FDCAN
// If no sample point is provided for data bit timing, use the nominal sample point.
if (args[ARG_brs_sample_point].u_int == 0) {
args[ARG_brs_sample_point].u_int = args[ARG_sample_point].u_int;
}
// Calculate CAN data bit timing from baudrate if provided
if (args[ARG_brs_baudrate].u_int != 0) {
pyb_can_get_bit_timing(args[ARG_brs_baudrate].u_int, args[ARG_brs_sample_point].u_int,
CAN_MAXIMUM_DBRP, CAN_MAXIMUM_DBS1, CAN_MAXIMUM_DBS2, 1,
&args[ARG_brs_bs1].u_int, &args[ARG_brs_bs2].u_int, &args[ARG_brs_prescaler].u_int);
}
// Set BRS bit timings.
self->can.Init.DataPrescaler = args[ARG_brs_prescaler].u_int;
self->can.Init.DataSyncJumpWidth = args[ARG_brs_sjw].u_int;
self->can.Init.DataTimeSeg1 = args[ARG_bs1].u_int; // DataTimeSeg1 = Propagation_segment + Phase_segment_1
self->can.Init.DataTimeSeg2 = args[ARG_bs2].u_int;
#else
// Init filter banks for classic CAN.
can2_start_bank = args[ARG_num_filter_banks].u_int;
for (int f = 0; f < CAN_MAX_FILTER; f++) {
can_clearfilter(self, f, can2_start_bank);
}
#endif
if (!can_init(self, args[ARG_mode].u_int, args[ARG_prescaler].u_int, args[ARG_sjw].u_int,
args[ARG_bs1].u_int, args[ARG_bs2].u_int, args[ARG_auto_restart].u_bool)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%d) init failure"), self->can_id);
}
return mp_const_none;
}
// CAN(bus, ...)
static mp_obj_t pyb_can_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// work out port
mp_uint_t can_idx;
if (mp_obj_is_str(args[0])) {
const char *port = mp_obj_str_get_str(args[0]);
if (0) {
#ifdef MICROPY_HW_CAN1_NAME
} else if (strcmp(port, MICROPY_HW_CAN1_NAME) == 0) {
can_idx = PYB_CAN_1;
#endif
#ifdef MICROPY_HW_CAN2_NAME
} else if (strcmp(port, MICROPY_HW_CAN2_NAME) == 0) {
can_idx = PYB_CAN_2;
#endif
#ifdef MICROPY_HW_CAN3_NAME
} else if (strcmp(port, MICROPY_HW_CAN3_NAME) == 0) {
can_idx = PYB_CAN_3;
#endif
} else {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%s) doesn't exist"), port);
}
} else {
can_idx = mp_obj_get_int(args[0]);
}
if (can_idx < 1 || can_idx > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_can_obj_all))) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%d) doesn't exist"), can_idx);
}
// check if the CAN is reserved for system use or not
if (MICROPY_HW_CAN_IS_RESERVED(can_idx)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("CAN(%d) is reserved"), can_idx);
}
pyb_can_obj_t *self;
if (MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] == NULL) {
self = mp_obj_malloc(pyb_can_obj_t, &pyb_can_type);
self->can_id = can_idx;
self->is_enabled = false;
MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1] = self;
} else {
self = MP_STATE_PORT(pyb_can_obj_all)[can_idx - 1];
}
if (!self->is_enabled || n_args > 1) {
if (self->is_enabled) {
// The caller is requesting a reconfiguration of the hardware
// this can only be done if the hardware is in init mode
can_deinit(self);
}
self->rxcallback0 = mp_const_none;
self->rxcallback1 = mp_const_none;
self->rx_state0 = RX_STATE_FIFO_EMPTY;
self->rx_state1 = RX_STATE_FIFO_EMPTY;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_can_init_helper(self, n_args - 1, args + 1, &kw_args);
}
}
return MP_OBJ_FROM_PTR(self);
}
static mp_obj_t pyb_can_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_can_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_init_obj, 1, pyb_can_init);
// deinit()
static mp_obj_t pyb_can_deinit(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
can_deinit(self);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_deinit_obj, pyb_can_deinit);
// Force a software restart of the controller, to allow transmission after a bus error
static mp_obj_t pyb_can_restart(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (!self->is_enabled) {
mp_raise_ValueError(NULL);
}
CAN_TypeDef *can = self->can.Instance;
#if MICROPY_HW_ENABLE_FDCAN
can->CCCR |= FDCAN_CCCR_INIT;
while ((can->CCCR & FDCAN_CCCR_INIT) == 0) {
}
can->CCCR |= FDCAN_CCCR_CCE;
while ((can->CCCR & FDCAN_CCCR_CCE) == 0) {
}
can->CCCR &= ~FDCAN_CCCR_INIT;
while ((can->CCCR & FDCAN_CCCR_INIT)) {
}
#else
can->MCR |= CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK) == 0) {
}
can->MCR &= ~CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK)) {
}
#endif
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_restart_obj, pyb_can_restart);
// Get the state of the controller
static mp_obj_t pyb_can_state(mp_obj_t self_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t state = CAN_STATE_STOPPED;
if (self->is_enabled) {
CAN_TypeDef *can = self->can.Instance;
#if MICROPY_HW_ENABLE_FDCAN
uint32_t psr = can->PSR;
if (psr & FDCAN_PSR_BO) {
state = CAN_STATE_BUS_OFF;
} else if (psr & FDCAN_PSR_EP) {
state = CAN_STATE_ERROR_PASSIVE;
} else if (psr & FDCAN_PSR_EW) {
state = CAN_STATE_ERROR_WARNING;
} else {
state = CAN_STATE_ERROR_ACTIVE;
}
#else
if (can->ESR & CAN_ESR_BOFF) {
state = CAN_STATE_BUS_OFF;
} else if (can->ESR & CAN_ESR_EPVF) {
state = CAN_STATE_ERROR_PASSIVE;
} else if (can->ESR & CAN_ESR_EWGF) {
state = CAN_STATE_ERROR_WARNING;
} else {
state = CAN_STATE_ERROR_ACTIVE;
}
#endif
}
return MP_OBJ_NEW_SMALL_INT(state);
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_can_state_obj, pyb_can_state);
// Get info about error states and TX/RX buffers
static mp_obj_t pyb_can_info(size_t n_args, const mp_obj_t *args) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_list_t *list;
if (n_args == 1) {
list = MP_OBJ_TO_PTR(mp_obj_new_list(8, NULL));
} else {
if (!mp_obj_is_type(args[1], &mp_type_list)) {
mp_raise_TypeError(NULL);
}
list = MP_OBJ_TO_PTR(args[1]);
if (list->len < 8) {
mp_raise_ValueError(NULL);
}
}
#if MICROPY_HW_ENABLE_FDCAN
FDCAN_GlobalTypeDef *can = self->can.Instance;
uint32_t esr = can->ECR;
list->items[0] = MP_OBJ_NEW_SMALL_INT((esr & FDCAN_ECR_TEC_Msk) >> FDCAN_ECR_TEC_Pos);
list->items[1] = MP_OBJ_NEW_SMALL_INT((esr & FDCAN_ECR_REC_Msk) >> FDCAN_ECR_REC_Pos);
list->items[2] = MP_OBJ_NEW_SMALL_INT(self->num_error_warning);
list->items[3] = MP_OBJ_NEW_SMALL_INT(self->num_error_passive);
list->items[4] = MP_OBJ_NEW_SMALL_INT(self->num_bus_off);
uint32_t TXEFS = can->TXEFS;
list->items[5] = MP_OBJ_NEW_SMALL_INT(TXEFS & 0x7);
list->items[6] = MP_OBJ_NEW_SMALL_INT((can->RXF0S & FDCAN_RXF0S_F0FL_Msk) >> FDCAN_RXF0S_F0FL_Pos);
list->items[7] = MP_OBJ_NEW_SMALL_INT((can->RXF1S & FDCAN_RXF1S_F1FL_Msk) >> FDCAN_RXF1S_F1FL_Pos);
#else
CAN_TypeDef *can = self->can.Instance;
uint32_t esr = can->ESR;
list->items[0] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_TEC_Pos & 0xff);
list->items[1] = MP_OBJ_NEW_SMALL_INT(esr >> CAN_ESR_REC_Pos & 0xff);
list->items[2] = MP_OBJ_NEW_SMALL_INT(self->num_error_warning);
list->items[3] = MP_OBJ_NEW_SMALL_INT(self->num_error_passive);
list->items[4] = MP_OBJ_NEW_SMALL_INT(self->num_bus_off);
int n_tx_pending = 0x01121223 >> ((can->TSR >> CAN_TSR_TME_Pos & 7) << 2) & 0xf;
list->items[5] = MP_OBJ_NEW_SMALL_INT(n_tx_pending);
list->items[6] = MP_OBJ_NEW_SMALL_INT(can->RF0R >> CAN_RF0R_FMP0_Pos & 3);
list->items[7] = MP_OBJ_NEW_SMALL_INT(can->RF1R >> CAN_RF1R_FMP1_Pos & 3);
#endif
return MP_OBJ_FROM_PTR(list);
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_can_info_obj, 1, 2, pyb_can_info);
// any(fifo) - return `True` if any message waiting on the FIFO, else `False`
static mp_obj_t pyb_can_any(mp_obj_t self_in, mp_obj_t fifo_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t fifo = mp_obj_get_int(fifo_in);
if (fifo == 0) {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO0) != 0) {
return mp_const_true;
}
} else {
if (__HAL_CAN_MSG_PENDING(&self->can, CAN_FIFO1) != 0) {
return mp_const_true;
}
}
return mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_2(pyb_can_any_obj, pyb_can_any);
// send(send, addr, *, timeout=5000)
static mp_obj_t pyb_can_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_data, ARG_id, ARG_timeout, ARG_rtr, ARG_extframe, ARG_fdf, ARG_brs };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
#if MICROPY_HW_ENABLE_FDCAN
{ MP_QSTR_fdf, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_brs, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
#endif
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(args[ARG_data].u_obj, &bufinfo, data);
if (bufinfo.len > CAN_MAX_DATA_FRAME) {
mp_raise_ValueError(MP_ERROR_TEXT("CAN data field too long"));
}
// send the data
CanTxMsgTypeDef tx_msg;
#if MICROPY_HW_ENABLE_FDCAN
uint8_t tx_data[CAN_MAX_DATA_FRAME];
memset(tx_data, 0, sizeof(tx_data));
tx_msg.MessageMarker = 0;
tx_msg.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
tx_msg.TxEventFifoControl = FDCAN_NO_TX_EVENTS;
if (args[ARG_extframe].u_bool == true) {
tx_msg.Identifier = args[ARG_id].u_int & 0x1FFFFFFF;
tx_msg.IdType = FDCAN_EXTENDED_ID;
} else {
tx_msg.Identifier = args[ARG_id].u_int & 0x7FF;
tx_msg.IdType = FDCAN_STANDARD_ID;
}
if (args[ARG_rtr].u_bool == false) {
tx_msg.TxFrameType = FDCAN_DATA_FRAME;
} else {
tx_msg.TxFrameType = FDCAN_REMOTE_FRAME;
}
if (args[ARG_fdf].u_bool == false) {
tx_msg.FDFormat = FDCAN_CLASSIC_CAN;
} else {
tx_msg.FDFormat = FDCAN_FD_CAN;
}
if (args[ARG_brs].u_bool == false) {
tx_msg.BitRateSwitch = FDCAN_BRS_OFF;
} else {
tx_msg.BitRateSwitch = FDCAN_BRS_ON;
}
// Roundup DataLength to next DLC size and encode to DLC.
for (mp_uint_t i = 0; i < MP_ARRAY_SIZE(DLCtoBytes); i++) {
if (bufinfo.len <= DLCtoBytes[i]) {
tx_msg.DataLength = (i << 16);
break;
}
}
#else
tx_msg.DLC = bufinfo.len;
uint8_t *tx_data = tx_msg.Data; // Data is uint32_t but holds only 1 byte
if (args[ARG_extframe].u_bool == true) {
tx_msg.ExtId = args[ARG_id].u_int & 0x1FFFFFFF;
tx_msg.IDE = CAN_ID_EXT;
} else {
tx_msg.StdId = args[ARG_id].u_int & 0x7FF;
tx_msg.IDE = CAN_ID_STD;
}
if (args[ARG_rtr].u_bool == false) {
tx_msg.RTR = CAN_RTR_DATA;
} else {
tx_msg.RTR = CAN_RTR_REMOTE;
}
#endif
for (mp_uint_t i = 0; i < bufinfo.len; i++) {
tx_data[i] = ((byte *)bufinfo.buf)[i];
}
HAL_StatusTypeDef status;
#if MICROPY_HW_ENABLE_FDCAN
uint32_t timeout_ms = args[ARG_timeout].u_int;
uint32_t start = HAL_GetTick();
while (HAL_FDCAN_GetTxFifoFreeLevel(&self->can) == 0) {
if (timeout_ms == 0) {
mp_raise_OSError(MP_ETIMEDOUT);
}
// Check for the Timeout
if (timeout_ms != HAL_MAX_DELAY) {
if (HAL_GetTick() - start >= timeout_ms) {
mp_raise_OSError(MP_ETIMEDOUT);
}
}
MICROPY_EVENT_POLL_HOOK
}
status = HAL_FDCAN_AddMessageToTxFifoQ(&self->can, &tx_msg, tx_data);
#else
self->can.pTxMsg = &tx_msg;
status = CAN_Transmit(&self->can, args[ARG_timeout].u_int);
#endif
if (status != HAL_OK) {
mp_hal_raise(status);
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_send_obj, 1, pyb_can_send);
// recv(fifo, list=None, *, timeout=5000)
static mp_obj_t pyb_can_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_fifo, ARG_list, ARG_timeout };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_list, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// receive the data
CanRxMsgTypeDef rx_msg;
#if MICROPY_HW_ENABLE_FDCAN
uint8_t rx_data[CAN_MAX_DATA_FRAME];
#else
uint8_t *rx_data = rx_msg.Data;
#endif
mp_uint_t fifo = args[ARG_fifo].u_int;
if (fifo == 0) {
fifo = CAN_FIFO0;
} else if (fifo == 1) {
fifo = CAN_FIFO1;
} else {
mp_raise_TypeError(NULL);
}
int ret = can_receive(&self->can, fifo, &rx_msg, rx_data, args[ARG_timeout].u_int);
if (ret < 0) {
mp_raise_OSError(-ret);
}
#if MICROPY_HW_ENABLE_FDCAN
uint32_t rx_dlc = rx_msg.DataLength;
#else
uint32_t rx_dlc = rx_msg.DLC;
#endif
// Manage the rx state machine
if ((fifo == CAN_FIFO0 && self->rxcallback0 != mp_const_none) ||
(fifo == CAN_FIFO1 && self->rxcallback1 != mp_const_none)) {
byte *state = (fifo == CAN_FIFO0) ? &self->rx_state0 : &self->rx_state1;
switch (*state) {
case RX_STATE_FIFO_EMPTY:
break;
case RX_STATE_MESSAGE_PENDING:
if (__HAL_CAN_MSG_PENDING(&self->can, fifo) == 0) {
// Fifo is empty
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_PENDING : CAN_IT_FIFO1_PENDING);
*state = RX_STATE_FIFO_EMPTY;
}
break;
case RX_STATE_FIFO_FULL:
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
*state = RX_STATE_MESSAGE_PENDING;
break;
case RX_STATE_FIFO_OVERFLOW:
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_OVRF : CAN_IT_FIFO1_OVRF);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == CAN_FIFO0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
*state = RX_STATE_MESSAGE_PENDING;
break;
}
}
// Create the tuple, or get the list, that will hold the return values
// Also populate the fifth element, either a new bytes or reuse existing memoryview
mp_obj_t ret_obj = args[ARG_list].u_obj;
mp_obj_t *items;
if (ret_obj == mp_const_none) {
ret_obj = mp_obj_new_tuple(5, NULL);
items = ((mp_obj_tuple_t *)MP_OBJ_TO_PTR(ret_obj))->items;
items[4] = mp_obj_new_bytes(rx_data, rx_dlc);
} else {
// User should provide a list of length at least 5 to hold the values
if (!mp_obj_is_type(ret_obj, &mp_type_list)) {
mp_raise_TypeError(NULL);
}
mp_obj_list_t *list = MP_OBJ_TO_PTR(ret_obj);
if (list->len < 5) {
mp_raise_ValueError(NULL);
}
items = list->items;
// Fifth element must be a memoryview which we assume points to a
// byte-like array which is large enough, and then we resize it inplace
if (!mp_obj_is_type(items[4], &mp_type_memoryview)) {
mp_raise_TypeError(NULL);
}
mp_obj_array_t *mv = MP_OBJ_TO_PTR(items[4]);
if (!(mv->typecode == (MP_OBJ_ARRAY_TYPECODE_FLAG_RW | BYTEARRAY_TYPECODE)
|| (mv->typecode | 0x20) == (MP_OBJ_ARRAY_TYPECODE_FLAG_RW | 'b'))) {
mp_raise_ValueError(NULL);
}
mv->len = rx_dlc;
memcpy(mv->items, rx_data, rx_dlc);
}
// Populate the first 4 values of the tuple/list
#if MICROPY_HW_ENABLE_FDCAN
items[0] = MP_OBJ_NEW_SMALL_INT(rx_msg.Identifier);
items[1] = mp_obj_new_bool(rx_msg.IdType == FDCAN_EXTENDED_ID);
items[2] = rx_msg.RxFrameType == FDCAN_REMOTE_FRAME ? mp_const_true : mp_const_false;
items[3] = MP_OBJ_NEW_SMALL_INT(rx_msg.FilterIndex);
#else
items[0] = MP_OBJ_NEW_SMALL_INT((rx_msg.IDE == CAN_ID_STD ? rx_msg.StdId : rx_msg.ExtId));
items[1] = mp_obj_new_bool(rx_msg.IDE == CAN_ID_EXT);
items[2] = rx_msg.RTR == CAN_RTR_REMOTE ? mp_const_true : mp_const_false;
items[3] = MP_OBJ_NEW_SMALL_INT(rx_msg.FMI);
#endif
// Return the result
return ret_obj;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_recv_obj, 1, pyb_can_recv);
static mp_obj_t pyb_can_clearfilter(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_extframe };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_int_t f = mp_obj_get_int(pos_args[1]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if MICROPY_HW_ENABLE_FDCAN
can_clearfilter(self, f, args[ARG_extframe].u_bool);
#else
if (self->can_id == 2) {
f += can2_start_bank;
}
can_clearfilter(self, f, can2_start_bank);
#endif
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_clearfilter_obj, 2, pyb_can_clearfilter);
// setfilter(bank, mode, fifo, params, *, rtr)
#define EXTENDED_ID_TO_16BIT_FILTER(id) (((id & 0xC00000) >> 13) | ((id & 0x38000) >> 15)) | 8
static mp_obj_t pyb_can_setfilter(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_bank, ARG_mode, ARG_fifo, ARG_params, ARG_rtr, ARG_extframe };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_bank, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_fifo, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = CAN_FILTER_FIFO0} },
{ MP_QSTR_params, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rtr, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_extframe, MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_can_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if MICROPY_HW_ENABLE_FDCAN
FDCAN_FilterTypeDef filter = {0};
if (args[ARG_extframe].u_bool == true) {
filter.IdType = FDCAN_EXTENDED_ID;
} else {
filter.IdType = FDCAN_STANDARD_ID;
}
filter.FilterIndex = args[ARG_bank].u_int;
// Check filter index.
if ((filter.IdType == FDCAN_STANDARD_ID && filter.FilterIndex >= self->can.Init.StdFiltersNbr) ||
(filter.IdType == FDCAN_EXTENDED_ID && filter.FilterIndex >= self->can.Init.ExtFiltersNbr)) {
goto error;
}
// Check filter mode
if (((args[ARG_mode].u_int != FDCAN_FILTER_RANGE) &&
(args[ARG_mode].u_int != FDCAN_FILTER_DUAL) &&
(args[ARG_mode].u_int != FDCAN_FILTER_MASK))) {
goto error;
}
// Check FIFO index.
if (args[ARG_fifo].u_int == 0) {
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
} else if (args[ARG_fifo].u_int == 1) {
filter.FilterConfig = FDCAN_FILTER_TO_RXFIFO1;
} else {
goto error;
}
size_t len;
mp_obj_t *params;
mp_obj_get_array(args[ARG_params].u_obj, &len, ¶ms);
if (len != 2) { // Check params len
goto error;
}
filter.FilterID1 = mp_obj_get_int(params[0]);
filter.FilterID2 = mp_obj_get_int(params[1]);
filter.FilterType = args[ARG_mode].u_int;
HAL_FDCAN_ConfigFilter(&self->can, &filter);
#else
size_t len;
size_t rtr_len;
mp_uint_t rtr_masks[4] = {0, 0, 0, 0};
mp_obj_t *rtr_flags;
mp_obj_t *params;
mp_obj_get_array(args[ARG_params].u_obj, &len, ¶ms);
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
mp_obj_get_array(args[ARG_rtr].u_obj, &rtr_len, &rtr_flags);
}
CAN_FilterConfTypeDef filter;
if (args[ARG_mode].u_int == MASK16 || args[ARG_mode].u_int == LIST16) {
if (len != 4) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_16BIT;
if (args[ARG_extframe].u_bool == true) {
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[3] = 0x02;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x02 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x02 : 0;
}
}
filter.FilterIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[0])) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[1])) | rtr_masks[1]; // mask1
filter.FilterIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[2])) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = EXTENDED_ID_TO_16BIT_FILTER(mp_obj_get_int(params[3])) | rtr_masks[3]; // mask2
} else { // Basic frames
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK16) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = 0x10;
rtr_masks[2] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[3] = 0x10;
} else { // LIST16
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x10 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x10 : 0;
rtr_masks[2] = mp_obj_get_int(rtr_flags[2]) ? 0x10 : 0;
rtr_masks[3] = mp_obj_get_int(rtr_flags[3]) ? 0x10 : 0;
}
}
filter.FilterIdLow = (mp_obj_get_int(params[0]) << 5) | rtr_masks[0]; // id1
filter.FilterMaskIdLow = (mp_obj_get_int(params[1]) << 5) | rtr_masks[1]; // mask1
filter.FilterIdHigh = (mp_obj_get_int(params[2]) << 5) | rtr_masks[2]; // id2
filter.FilterMaskIdHigh = (mp_obj_get_int(params[3]) << 5) | rtr_masks[3]; // mask2
}
if (args[ARG_mode].u_int == MASK16) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[ARG_mode].u_int == LIST16) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
} else if (args[ARG_mode].u_int == MASK32 || args[ARG_mode].u_int == LIST32) {
if (len != 2) {
goto error;
}
filter.FilterScale = CAN_FILTERSCALE_32BIT;
if (args[ARG_rtr].u_obj != MP_OBJ_NULL) {
if (args[ARG_mode].u_int == MASK32) {
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = 0x02;
} else { // LIST32
rtr_masks[0] = mp_obj_get_int(rtr_flags[0]) ? 0x02 : 0;
rtr_masks[1] = mp_obj_get_int(rtr_flags[1]) ? 0x02 : 0;
}
}
filter.FilterIdHigh = (mp_obj_get_int(params[0]) & 0x1FFFE000) >> 13;
filter.FilterIdLow = (((mp_obj_get_int(params[0]) & 0x00001FFF) << 3) | 4) | rtr_masks[0];
filter.FilterMaskIdHigh = (mp_obj_get_int(params[1]) & 0x1FFFE000) >> 13;
filter.FilterMaskIdLow = (((mp_obj_get_int(params[1]) & 0x00001FFF) << 3) | 4) | rtr_masks[1];
if (args[ARG_mode].u_int == MASK32) {
filter.FilterMode = CAN_FILTERMODE_IDMASK;
}
if (args[ARG_mode].u_int == LIST32) {
filter.FilterMode = CAN_FILTERMODE_IDLIST;
}
} else {
goto error;
}
filter.FilterFIFOAssignment = args[ARG_fifo].u_int;
filter.FilterNumber = args[ARG_bank].u_int;
if (self->can_id == 1) {
if (filter.FilterNumber >= can2_start_bank) {
goto error;
}
} else if (self->can_id == 2) {
filter.FilterNumber = filter.FilterNumber + can2_start_bank;
if (filter.FilterNumber > 27) {
goto error;
}
} else {
if (filter.FilterNumber > 13) { // CAN3 is independent and has its own 14 filters.
goto error;
}
}
filter.FilterActivation = ENABLE;
filter.BankNumber = can2_start_bank;
HAL_CAN_ConfigFilter(&self->can, &filter);
#endif
return mp_const_none;
error:
mp_raise_ValueError(MP_ERROR_TEXT("CAN filter parameter error"));
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_can_setfilter_obj, 1, pyb_can_setfilter);
static mp_obj_t pyb_can_rxcallback(mp_obj_t self_in, mp_obj_t fifo_in, mp_obj_t callback_in) {
pyb_can_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t fifo = mp_obj_get_int(fifo_in);
mp_obj_t *callback;
callback = (fifo == 0) ? &self->rxcallback0 : &self->rxcallback1;
if (callback_in == mp_const_none) {
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_PENDING : CAN_IT_FIFO1_PENDING);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
__HAL_CAN_DISABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_OVRF : CAN_IT_FIFO1_OVRF);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FIFO0_FULL : CAN_FLAG_FIFO1_FULL);
__HAL_CAN_CLEAR_FLAG(&self->can, (fifo == CAN_FIFO0) ? CAN_FLAG_FIFO0_OVRF : CAN_FLAG_FIFO1_OVRF);
*callback = mp_const_none;
} else if (*callback != mp_const_none) {
// Rx call backs has already been initialized
// only the callback function should be changed
*callback = callback_in;
} else if (mp_obj_is_callable(callback_in)) {
*callback = callback_in;
uint32_t irq = 0;
if (self->can_id == PYB_CAN_1) {
irq = (fifo == 0) ? CAN1_RX0_IRQn : CAN1_RX1_IRQn;
#if defined(CAN2)
} else if (self->can_id == PYB_CAN_2) {
irq = (fifo == 0) ? CAN2_RX0_IRQn : CAN2_RX1_IRQn;
#endif
#if defined(CAN3)
} else {
irq = (fifo == 0) ? CAN3_RX0_IRQn : CAN3_RX1_IRQn;
#endif
}
NVIC_SetPriority(irq, IRQ_PRI_CAN);
HAL_NVIC_EnableIRQ(irq);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_PENDING : CAN_IT_FIFO1_PENDING);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_FULL : CAN_IT_FIFO1_FULL);
__HAL_CAN_ENABLE_IT(&self->can, (fifo == 0) ? CAN_IT_FIFO0_OVRF : CAN_IT_FIFO1_OVRF);
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_3(pyb_can_rxcallback_obj, pyb_can_rxcallback);
static const mp_rom_map_elem_t pyb_can_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_can_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_can_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&pyb_can_restart_obj) },
{ MP_ROM_QSTR(MP_QSTR_state), MP_ROM_PTR(&pyb_can_state_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_can_info_obj) },
{ MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_can_any_obj) },
{ MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_can_send_obj) },
{ MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_can_recv_obj) },
{ MP_ROM_QSTR(MP_QSTR_setfilter), MP_ROM_PTR(&pyb_can_setfilter_obj) },
{ MP_ROM_QSTR(MP_QSTR_clearfilter), MP_ROM_PTR(&pyb_can_clearfilter_obj) },
{ MP_ROM_QSTR(MP_QSTR_rxcallback), MP_ROM_PTR(&pyb_can_rxcallback_obj) },
#if MICROPY_HW_ENABLE_FDCAN
{ MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(CAN_MODE_NORMAL) },
{ MP_ROM_QSTR(MP_QSTR_LOOPBACK), MP_ROM_INT(CAN_MODE_LOOPBACK) },
{ MP_ROM_QSTR(MP_QSTR_SILENT), MP_ROM_INT(CAN_MODE_SILENT) },
{ MP_ROM_QSTR(MP_QSTR_SILENT_LOOPBACK), MP_ROM_INT(CAN_MODE_SILENT_LOOPBACK) },
{ MP_ROM_QSTR(MP_QSTR_RANGE), MP_ROM_INT(FDCAN_FILTER_RANGE) },
{ MP_ROM_QSTR(MP_QSTR_DUAL), MP_ROM_INT(FDCAN_FILTER_DUAL) },