Skip to content

Latest commit

 

History

History
83 lines (48 loc) · 2.66 KB

README.md

File metadata and controls

83 lines (48 loc) · 2.66 KB

python-xdog

Simple implementation of XDoG

There are two principle files: main.py to run xdog implementation with image and video_jit to run in "real time" with webcam

rapela a) Original rapela_grayscale b) Grayscale xdog_garygrossi c) Xdog GaryGrossi
xdog_nat d) Xdog Test Nat xdog_project1 e) Xdog Test xdog_hatch f) Xdog Hatch

Parameters

  • a) Original image RGB
  • b) Load as grayscale (OpenCV)
  • c) XdogGary: sigma=0.5, k=200, gamma=0.98, epsilon=0.1, phi=10
  • d) Xdog this project: sigma=1, k=1.6, gamma=0.5, epsilon=-0.5, phi=10
  • e) Xdog this project: sigma=0.4, k=1.6, gamma=0.5, epsilon=-0.5, phi=10
  • f) Xdog this project: hatchBlend function

Demo of video_jit.py

Webcam XDoG Demo


Dependencies

  • Python 2.7

  • OpenCV (Tested on 2.4.13)

     sudo apt-get install python-opencv
    
  • Numpy 1.11.2

     pip install numpy
    

If you want to run video_jit.py:

  • Numba

     conda install numba
    

There is a requirement.txt to install numpy and numba:

pip install -r requirements.txt

Test time in Difference of Gaussians (DoG) implementation

start = time.time()
img1 = cv2.GaussianBlur(img,(0,0),0.5)
elapsed = time.time() - start
elapsed = 0.000515937805176

start = time.time()	
sigma = 0.5
gauss1 = gaussian_filter(img, 0.5)
elapsed = time.time() - start
print elapsed

elapsed = 0.00245594978333

So opencv cv2.GaussianBlur is faster. The difference from gaussian blur results from OpenCV and SciPy is similar.
The difference from each mat can be seen in image below:

Difference from mat of cv2.GaussianBlur and gaussian_filter

References used in these project

Xdog Article

garygrossi/XDoG-Python