-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
272 lines (196 loc) · 9.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 20 13:57:25 2023
@author: hawkiyc
"""
#%%
'Import Library'
import math
import numpy as np
import os
import random
from time import sleep
import torch
import torch.optim as optim
from torch.autograd import grad, Variable
from tqdm import tqdm
from FetchData import *
from params import *
from utils import *
from WaveGAN import *
#%%
'Training_Class'
class WaveGan_GP(object):
def __init__(self, n_epoch):
super(WaveGan_GP, self).__init__()
self.g_cost = []
self.train_d_cost = []
self.train_w_distance = []
self.valid_g_cost = [-1]
self.valid_reconstruction = []
self.discriminator = \
WaveGANDiscriminator(model_size=model_capacity_size,
use_batch_norm=use_batchnorm,
num_channels=num_channels,).to(device)
self.discriminator.apply(weights_init)
self.generator = WaveGANGenerator(model_size=model_capacity_size,
use_batch_norm=use_batchnorm,
num_channels=num_channels,
).to(device)
self.generator.apply(weights_init)
'opt for G and D'
self.optimizer_g = optim.Adam(self.generator.parameters(),
lr=lr_g, betas=(beta1, beta2))
self.optimizer_d = optim.Adam(self.discriminator.parameters(),
lr=lr_d, betas=(beta1, beta2))
self.validate = validate
self.n_samples_per_batch = batch_size
self.n_iterations = n_epoch * math.ceil(N_sample / batch_size)
self.n_iter_per_epoch = math.ceil(N_sample / batch_size)
def calculate_discriminator_loss(self, real, generated):
disc_out_gen = self.discriminator(generated)
disc_out_real = self.discriminator(real)
alpha = torch.FloatTensor(batch_size, 1, 1).uniform_(0, 1).to(device)
alpha = alpha.expand(batch_size, real.size(1), real.size(2))
interpolated = (1 - alpha) * real.data + \
(alpha) * generated.data[:batch_size]
interpolated = Variable(interpolated, requires_grad=True)
'calculate probability of interpolated examples'
prob_interpolated = self.discriminator(interpolated)
grad_inputs = interpolated
ones = torch.ones(prob_interpolated.size()).to(device)
gradients = grad(outputs=prob_interpolated, inputs=grad_inputs,
grad_outputs=ones, create_graph=True,
retain_graph=True, only_inputs=True,)[0]
"calculate gradient penalty"
grad_penalty = (p_coeff * ((
gradients.view(gradients.size(0), -1).norm(2, dim=1) - 1) ** 2
).mean())
assert not (torch.isnan(grad_penalty))
assert not (torch.isnan(disc_out_gen.mean()))
assert not (torch.isnan(disc_out_real.mean()))
cost_wd = disc_out_gen.mean() - disc_out_real.mean()
cost = cost_wd + grad_penalty
return cost, cost_wd
def apply_zero_grad(self):
self.generator.zero_grad()
self.optimizer_g.zero_grad()
self.discriminator.zero_grad()
self.optimizer_d.zero_grad()
def enable_disc_disable_gen(self):
gradients_status(self.discriminator, True)
gradients_status(self.generator, False)
def enable_gen_disable_disc(self):
gradients_status(self.discriminator, False)
gradients_status(self.generator, True)
def disable_all(self):
gradients_status(self.discriminator, False)
gradients_status(self.generator, False)
def train(self):
progress_bar = tqdm(total=
self.n_iterations // self.n_iter_per_epoch)
'For Forged ECG while Saving Results'
fixed_noise = sample_noise(batch_size).to(device)
gan_model_name = "{}.tar".format(model_prefix)
first_iter = 0
if take_backup and os.path.isfile(gan_model_name):
if torch.cuda.is_available() or torch.backends.mps.is_available():
checkpoint = torch.load(gan_model_name)
else:
checkpoint = torch.load(gan_model_name, map_location="cpu")
self.generator.load_state_dict(checkpoint["generator"])
self.discriminator.load_state_dict(checkpoint["discriminator"])
self.optimizer_d.load_state_dict(checkpoint["optimizer_d"])
self.optimizer_g.load_state_dict(checkpoint["optimizer_g"])
self.train_d_cost = checkpoint["train_d_cost"]
self.train_w_distance = checkpoint["train_w_distance"]
self.valid_g_cost = checkpoint["valid_g_cost"]
self.g_cost = checkpoint["g_cost"]
first_iter = checkpoint["n_iterations"] + 1
for i in range(int(first_iter/self.n_iter_per_epoch)):
sleep(0.01)
progress_bar.update()
self.generator.eval()
with torch.no_grad():
fake = self.generator(fixed_noise).detach().cpu().numpy()
save_samples(fake, int(first_iter/self.n_iter_per_epoch))
self.generator.train()
self.discriminator.train()
for iter_indx in range(first_iter, self.n_iterations):
self.enable_disc_disable_gen()
for _ in range(n_critic):
real_signal = create_batch_reader(ecg)
'Creat Forged ECG'
noise = sample_noise(batch_size * generator_batch_size_factor)
generated = self.generator(noise)
'Calculating discriminator loss and updating discriminator'
self.apply_zero_grad()
disc_cost, disc_wd = self.calculate_discriminator_loss(
real_signal.data, generated.data)
assert not (torch.isnan(disc_cost))
disc_cost.backward()
self.optimizer_d.step()
if self.validate and (iter_indx+1) % self.n_iter_per_epoch == 0:
self.disable_all()
val_data = create_batch_reader(val_ecg)
val_real = val_data
with torch.no_grad():
val_discriminator_output = self.discriminator(val_real)
val_generator_cost = val_discriminator_output.mean()
self.valid_g_cost.append(val_generator_cost.item())
'Update G network every n_critic steps'
self.apply_zero_grad()
self.enable_gen_disable_disc()
noise = sample_noise(batch_size * generator_batch_size_factor)
generated = self.generator(noise)
discriminator_output_fake = self.discriminator(generated)
generator_cost = -discriminator_output_fake.mean()
generator_cost.backward()
self.optimizer_g.step()
self.disable_all()
if (iter_indx+1) % self.n_iter_per_epoch == 0:
self.g_cost.append(generator_cost.item() * -1)
self.train_d_cost.append(disc_cost.item())
self.train_w_distance.append(disc_wd.item() * -1)
progress_updates = {
"Loss_D WD": str(self.train_w_distance[-1]),
"Loss_G": str(self.g_cost[-1]),
"Val_G": str(self.valid_g_cost[-1]),}
progress_bar.set_postfix(progress_updates)
progress_bar.update()
'lr decay'
if decay_lr:
decay = max(0.0, 1.0 - (iter_indx * 1.0 / self.n_iterations))
'update the learning rate'
update_optimizer_lr(self.optimizer_d, lr_d, decay)
update_optimizer_lr(self.optimizer_g, lr_g, decay)
if (iter_indx+1) % self.n_iter_per_epoch == 0:
with torch.no_grad():
latent_space_interpolation(self.generator,
int(
(1+iter_indx)/
self.n_iter_per_epoch),
n_samples=2,)
fake = self.generator(fixed_noise).detach().cpu().numpy()
save_samples(fake, int((1+iter_indx)/self.n_iter_per_epoch))
if take_backup and (iter_indx+1) % self.n_iter_per_epoch == 0:
saving_dict = {
"generator": self.generator.state_dict(),
"discriminator": self.discriminator.state_dict(),
"n_iterations": iter_indx,
"optimizer_d": self.optimizer_d.state_dict(),
"optimizer_g": self.optimizer_g.state_dict(),
"train_d_cost": self.train_d_cost,
"train_w_distance": self.train_w_distance,
"valid_g_cost": self.valid_g_cost,
"g_cost": self.g_cost,}
torch.save(saving_dict, gan_model_name)
self.generator.eval()
#%%
'Training the Model'
if __name__ == "__main__":
wave_gan = WaveGan_GP(200)
wave_gan.train()
visualize_loss(wave_gan.g_cost, wave_gan.valid_g_cost,
"Train", "Val", "Negative Critic Loss")